数学八年级下册第一章知识点
1个回答
展开全部
以下是 考 网为大家整理的数学八年级下册第一章知识点的文章,供大家学习参考!
重点、难点:
重点:有平方根、立方根的概念及意义和点的坐标。
难点:平方根、立方根等概念的理解、简单实数运算及无理数大小的比较。
一、知识框架图:
二、重要知识点 一)、知识点提示:
1、平方根、算术平方根、立方根、无理数、实数等概念的理解,举例说明。 2、实数怎样分类?
3、如何在产面直角坐标系中,说出点的坐标及根据坐标找点。
4、在实数范围内找一个数的绝对值、倒数、相反数、及各种运算的运算顺序。 二)知识点
平方根:
1、概念:如果有一个数r,使得
r
2
a,那么我们把r叫作a的一个平方根。
①、一个正数的平方根有两个,它们互为相反数; ②、负数没有平方根; ③、0的平方根有且只有一个(它就是0) ④、a的正平方根叫作a的算术平方根,记作a
2、求一个非负数的平方根,叫作开平方。一个正.
数先开平方再2次方等于它本身; 一个正.
数先2次方再开平方也等于它本身。 立方根
1、概念:如果有一个数b,使得
b
2
a,那么我们把b叫作a的一个立方根。
①、一个正数有一个立方根,它是正数; ②、负数有一个负的立方根; ③、0的平方根有且只有一个(它就是0) ④、a的立方根记作a。
2、求立方根号a,叫作开立方。一个数先开立方再3次方等于它本身;
一个数先3次方再开立方也等于它本身。
实数:
1、 有理数和无理数统称为实数。 2、 实数的分类
3、 4、 实数大小的比较。
无理数:无限不循环小数。
有效数字:从左边第一个不为0的数字起,到时精确到的数位止共有几个数
字则这个数的有效数字就是几位。
平而直角坐标系:
1、 能写出点的坐标和根据点的坐标描点。
2、 关于y轴的轴反射公式:(x的坐标不变,y坐标变为它的相反数) 3、 关于x轴的轴反射公式:(x的坐标变为它的相反数,y坐标不变)
4、 平移公式:左右平移则x的坐标值减小或增加,上下平移则y的坐标增加或减小。5、 会用方位角和距离描述点的位置。
第一章复习题
一、填空题:(本题共10小题,每小题2分,共20分)
1、4的平方根是________,算术平方根是_________的算术平方根是_________。 2、点A到x轴的距离为2,到y轴的距离是1,则A点坐标是=________。 3、坐标平面上的点与 一一对应,数轴上的点与 一一对应。 4、8的立方根是_________。-8的立方根是_________。 5、23=_________。
6、近似数0.03050有______个有效数字。
7、一个正数有______个平方根,它们______________。
8、22=________,(2)2
=_________。
9、列举三个无理数=_______ _。
10、点(1,-2)关于x轴的轴反射点的坐标是____,关于y轴的轴反射点的坐标___。
二、选择题:(本题共10小题,每小题3分,共30分) 11、一个数的平方等于它本身,这个数是( )。
A、 0 B、0和1 C、-1和1 D、0和-1
12、
1
4的算术平方根是( )。 A、 111116 B、2 C、2 D、2
13下列说法正确的是…………………………………………( ) A 有理数只是有限小数 B 无理数是无限小数 C 无限小数是无理数 D
3
是分数 14、下列式子中,无意义的是( )。
A、3 B、3 C、32
D、13
15、的平方根是( )。
A、4 B、±4 C、2 D、±2 16、如果一个数的立方根等于它本身,这个数是( )。
A、0,±1 B、0 C、1 D、-1 17、下列结论中正确的是………………………………( )
A数轴上任一点都表示的有理数 B数轴上任一点都表示的有理数 C 两个无理数之和一定是无理数 D 数轴上任意两点之间还有无数个点 18、
-27 )
A 0 B 6 C 0 或-6 D -12或6 19、给出四个数,2,3 ,3.14,π其中无理数共有( )。 A、1个 B、2个 C、3个 D、4个 20、下列叙述正确的是( )。
A、正数的平方根不可能是负数 B、无限小数是无理数 C、实数与数轴上的点一一对应 D、带根号的数是无理数
三、解答题:(本题共5小题,每小题6分,共30分) 21、17
64
22、32
23、计算(保留三位有效数字)
23、27.65+0.02856-3.414 24、25x2-49=0
25、25x2-49=0 26、(x-2)3+0.216=0 27、(x+1)2-0.01=0
28、估算与 5最接近的两个整数。
四、综合应用:(本题共2小题,每小题10分,共20分) 29、如图△ABC: 1)、写出△ABC的三个顶点A、B、C的坐标。 2)、画出△ABC在关于y轴的轴反射下的象△DEF。
重点、难点:
重点:有平方根、立方根的概念及意义和点的坐标。
难点:平方根、立方根等概念的理解、简单实数运算及无理数大小的比较。
一、知识框架图:
二、重要知识点 一)、知识点提示:
1、平方根、算术平方根、立方根、无理数、实数等概念的理解,举例说明。 2、实数怎样分类?
3、如何在产面直角坐标系中,说出点的坐标及根据坐标找点。
4、在实数范围内找一个数的绝对值、倒数、相反数、及各种运算的运算顺序。 二)知识点
平方根:
1、概念:如果有一个数r,使得
r
2
a,那么我们把r叫作a的一个平方根。
①、一个正数的平方根有两个,它们互为相反数; ②、负数没有平方根; ③、0的平方根有且只有一个(它就是0) ④、a的正平方根叫作a的算术平方根,记作a
2、求一个非负数的平方根,叫作开平方。一个正.
数先开平方再2次方等于它本身; 一个正.
数先2次方再开平方也等于它本身。 立方根
1、概念:如果有一个数b,使得
b
2
a,那么我们把b叫作a的一个立方根。
①、一个正数有一个立方根,它是正数; ②、负数有一个负的立方根; ③、0的平方根有且只有一个(它就是0) ④、a的立方根记作a。
2、求立方根号a,叫作开立方。一个数先开立方再3次方等于它本身;
一个数先3次方再开立方也等于它本身。
实数:
1、 有理数和无理数统称为实数。 2、 实数的分类
3、 4、 实数大小的比较。
无理数:无限不循环小数。
有效数字:从左边第一个不为0的数字起,到时精确到的数位止共有几个数
字则这个数的有效数字就是几位。
平而直角坐标系:
1、 能写出点的坐标和根据点的坐标描点。
2、 关于y轴的轴反射公式:(x的坐标不变,y坐标变为它的相反数) 3、 关于x轴的轴反射公式:(x的坐标变为它的相反数,y坐标不变)
4、 平移公式:左右平移则x的坐标值减小或增加,上下平移则y的坐标增加或减小。5、 会用方位角和距离描述点的位置。
第一章复习题
一、填空题:(本题共10小题,每小题2分,共20分)
1、4的平方根是________,算术平方根是_________的算术平方根是_________。 2、点A到x轴的距离为2,到y轴的距离是1,则A点坐标是=________。 3、坐标平面上的点与 一一对应,数轴上的点与 一一对应。 4、8的立方根是_________。-8的立方根是_________。 5、23=_________。
6、近似数0.03050有______个有效数字。
7、一个正数有______个平方根,它们______________。
8、22=________,(2)2
=_________。
9、列举三个无理数=_______ _。
10、点(1,-2)关于x轴的轴反射点的坐标是____,关于y轴的轴反射点的坐标___。
二、选择题:(本题共10小题,每小题3分,共30分) 11、一个数的平方等于它本身,这个数是( )。
A、 0 B、0和1 C、-1和1 D、0和-1
12、
1
4的算术平方根是( )。 A、 111116 B、2 C、2 D、2
13下列说法正确的是…………………………………………( ) A 有理数只是有限小数 B 无理数是无限小数 C 无限小数是无理数 D
3
是分数 14、下列式子中,无意义的是( )。
A、3 B、3 C、32
D、13
15、的平方根是( )。
A、4 B、±4 C、2 D、±2 16、如果一个数的立方根等于它本身,这个数是( )。
A、0,±1 B、0 C、1 D、-1 17、下列结论中正确的是………………………………( )
A数轴上任一点都表示的有理数 B数轴上任一点都表示的有理数 C 两个无理数之和一定是无理数 D 数轴上任意两点之间还有无数个点 18、
-27 )
A 0 B 6 C 0 或-6 D -12或6 19、给出四个数,2,3 ,3.14,π其中无理数共有( )。 A、1个 B、2个 C、3个 D、4个 20、下列叙述正确的是( )。
A、正数的平方根不可能是负数 B、无限小数是无理数 C、实数与数轴上的点一一对应 D、带根号的数是无理数
三、解答题:(本题共5小题,每小题6分,共30分) 21、17
64
22、32
23、计算(保留三位有效数字)
23、27.65+0.02856-3.414 24、25x2-49=0
25、25x2-49=0 26、(x-2)3+0.216=0 27、(x+1)2-0.01=0
28、估算与 5最接近的两个整数。
四、综合应用:(本题共2小题,每小题10分,共20分) 29、如图△ABC: 1)、写出△ABC的三个顶点A、B、C的坐标。 2)、画出△ABC在关于y轴的轴反射下的象△DEF。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |