sin45-a=cos多少

 我来答
佳奇南11
2023-05-18 · 贡献了超过114个回答
知道答主
回答量:114
采纳率:0%
帮助的人:2.4万
展开全部
首先,我们使用三角恒等式之一(cos(a - b) = cos(a)*cos(b) sin(a)*sin(b))将cos转换为一个sin函数。具体来说,sin(45-a) = sin(45)*cos(a) - cos(45)*sin(a) = (1/√2)*cos(a) - (1/√2)*sin(a)。因此,cos(a) = (1/√2)*cos(a) (1/√2)*sin(a) sin(45)。接下来,我们根据sin(45) = cos(45) = 1/√2进行简化,得到:cos(a) = (1/√2)*cos(a) (1/√2)*sin(a) 1/√2。然后,我们可以从等式两侧减去(1/√2)*cos(a),得到:cos(a) - (1/√2)*cos(a) = (1/√2)*sin(a) 1/√2,即(1/√2)*cos(a) = (1/√2)*sin(a) 1/√2. 最后,我们可以将两侧除以(1/√2),得到:cos(a) = sin(a) √2/2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式