如图,在RT△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连

laoyushun
2010-07-22 · TA获得超过732个赞
知道答主
回答量:113
采纳率:0%
帮助的人:72.8万
展开全部
(1)证明:∵Rt△ABC中,∠BAC=90,AB=AC,D为BC的中点
∴AD⊥BC 故△BAD∽△BCA
∴BD:BA=BA:BC
∴BA×=BD×BC
∵△DBG∽△EBC
∴BD:BE=BG:BC 即:BD×BC=BE×BG
∴BA×BA=BG×BE 即:BG:BA=BA:BE
∴△BAG∽△BEA ∠BGA=∠BAE=90
∴AG⊥BE

(2)证明:连接DE,E是AC中点,D是BC中点,
∴DE//BA ,因为BA⊥AC,所以 DE⊥AC
设AB=2a AE=a
做CH⊥BE交BE的延长线于H(图可看上图)
∵∠AEG=∠CEH,∠AGE=∠CHE,AE=EC
∴△AEG≌△CEH(AAS)
∴CH=AG ∠GAE=∠HCE
∵∠BAE为直角
∴BE=√5a
∴AE=AB*AE/BE=(2/√5)a
∴CH=(2/√5)a
∵AG⊥BE,∠FGE=45
∴∠AGF=45=∠ECB
∵∠DFE=∠GAE+∠AGF=∠HCE+∠ECB;
∴∠DFE=∠BCH
又∵DE⊥AC ,CH⊥BE
∴△DEF∽△BHC
∴EF:DF=CH:BC=(2/√5)a:2√2a=1:√10=√10/10
上官景辰
2012-08-27
知道答主
回答量:24
采纳率:0%
帮助的人:8.7万
展开全部
(1)证明:∵Rt△ABC中,∠BAC=90,AB=AC,D为BC的中点
∴AD⊥BC 故△BAD∽△BCA
∴BD:BA=BA:BC
∴BA×=BD×BC
∵△DBG∽△EBC
∴BD:BE=BG:BC 即:BD×BC=BE×BG
∴BA×BA=BG×BE 即:BG:BA=BA:BE
∴△BAG∽△BEA ∠BGA=∠BAE=90
∴AG⊥BE

(2)证明:连接DE,E是AC中点,D是BC中点,
∴DE//BA ,因为BA⊥AC,所以 DE⊥AC
设AB=2a AE=a
做CH⊥BE交BE的延长线于H(图可看上图)
∵∠AEG=∠CEH,∠AGE=∠CHE,AE=EC
∴△AEG≌△CEH(AAS)
∴CH=AG ∠GAE=∠HCE
∵∠BAE为直角
∴BE=√5a
∴AE=AB*AE/BE=(2/√5)a
∴CH=(2/√5)a
∵AG⊥BE,∠FGE=45
∴∠AGF=45=∠ECB
∵∠DFE=∠GAE+∠AGF=∠HCE+∠ECB;
∴∠DFE=∠BCH
又∵DE⊥AC ,CH⊥BE
∴△DEF∽△BHC
∴EF:DF=CH:BC=(2/√5)a:2√2a=1:√10=√10/10
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式