f(x)在+x=0+处连续,且lim[f(x)+e^x]^1/x=2,求f(0)的导数
2个回答
展开全部
x->0
e^x = 1+x +o(x)
f(x)= f(0) +f'(0)x +o(x)
f(x)+e^x = [1+ f(0)] + [1+ f'(0)]x + o(x)
lim(x->0) [f(x)+e^x]^(1/x) =2
lim(x->0) { [1+ f(0)] + [1+ f'(0)]x }^(1/x) =2
=>
1+ f(0) =1 and 1+ f'(0)=2
f(0)=0 and f'(0) =1
e^x = 1+x +o(x)
f(x)= f(0) +f'(0)x +o(x)
f(x)+e^x = [1+ f(0)] + [1+ f'(0)]x + o(x)
lim(x->0) [f(x)+e^x]^(1/x) =2
lim(x->0) { [1+ f(0)] + [1+ f'(0)]x }^(1/x) =2
=>
1+ f(0) =1 and 1+ f'(0)=2
f(0)=0 and f'(0) =1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询