椭圆与双曲线有什么共同点?
椭圆与双曲线共焦点最全结论如下:
设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0),双曲线C2:x^2/m^2-y^2/n^2=0(m>0,n>0),C1,C2共同的焦点为F1(-c,0),F2(c,0)。
C1,C2的一个交点为A(以在第一象限为例),|AF1|=m,|AF2|=n,∠F1AF2=α,C1,C2的离心率分别为e1,e2,k=b^2/n^2∈(0,+∞)。
椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。
其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。椭圆是圆锥曲线的一种,即圆锥与平面的截线。
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。
因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面垂直于圆柱体轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。
也可以这样定义椭圆,椭圆是点的集合,点其到两个焦点的距离的和是固定数。
椭圆在物理,天文和工程方面很常见。
2024-08-02 广告