已知∫xdyxdx=1,求∫xdyxdy=多少?

 我来答
liuxuqifei
2023-06-29 · TA获得超过7719个赞
知道小有建树答主
回答量:739
采纳率:87%
帮助的人:272万
展开全部
  答案:∫∫xydxdy=1/4
  解:∫∫xydxdy=∫[0→1]xdx∫[0→1]ydy=1/2x²|[0→1]*1/2y²|[0→1]=1/4
  解析:对于二重积分,一般使用的方法是累次积分,即先积分x后积分y,或反之。在本题中,积分区域为0≤x≤1,0≤y≤1的正方形,因此x与y相互独立,互不影响,因此可以将二重积分∫∫xydxdy拆成0≤x≤1时∫xdx的积分与0≤y≤1时∫ydy积分的乘积。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式