求根号下(1+ x^2)分之一的积分
1个回答
展开全部
根号下 (1 + x^2) 分之一的积分可以表示为:
∫(1/√(1 + x^2)) dx
这是一个常见的积分形式,也被称为反正弦积分。为了求解这个积分,可以进行变量替换。
令 x = tanθ,其中 θ 是一个新的变量。则 dx = sec^2θ dθ,并且 1 + x^2 = 1 + tan^2θ = sec^2θ。
将这些替换应用于原始积分:
∫(1/√(1 + x^2)) dx = ∫(1/√(sec^2θ)) sec^2θ dθ
简化后可得:
∫(1/√(1 + x^2)) dx = ∫dθ = θ + C
回顾之前的变量替换,我们有 x = tanθ。因此,θ = arctan(x)。
因此,最终的积分结果是:
∫(1/√(1 + x^2)) dx = arctan(x) + C
其中,C 是积分常数。这就是给定函数的积分表达式。
∫(1/√(1 + x^2)) dx
这是一个常见的积分形式,也被称为反正弦积分。为了求解这个积分,可以进行变量替换。
令 x = tanθ,其中 θ 是一个新的变量。则 dx = sec^2θ dθ,并且 1 + x^2 = 1 + tan^2θ = sec^2θ。
将这些替换应用于原始积分:
∫(1/√(1 + x^2)) dx = ∫(1/√(sec^2θ)) sec^2θ dθ
简化后可得:
∫(1/√(1 + x^2)) dx = ∫dθ = θ + C
回顾之前的变量替换,我们有 x = tanθ。因此,θ = arctan(x)。
因此,最终的积分结果是:
∫(1/√(1 + x^2)) dx = arctan(x) + C
其中,C 是积分常数。这就是给定函数的积分表达式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询