一道高一数学题的解题过程

若关于x的不等式(1+k^2)〔1加k的平方〕小于等于k^4+4〔k的4次加4〕的解集是M,则对任意常数k总有()... 若关于x的不等式(1+k^2) 〔1加k的平方〕 小于等于k^4+4〔k的4次加4〕的解集是M,则对任意常数k总有( ) 展开
51458782
2010-07-19 · TA获得超过2661个赞
知道小有建树答主
回答量:364
采纳率:100%
帮助的人:420万
展开全部
你题目里少些了一个x吧,应该是关于x的不等式是(1+k^2)x
那么
(1+k^2)x≤k^4+4可得x≤(k^4+4)/(1+k^2),
设f(k)=(k^4+4)/(1+k^2),
则f(k)=[(1+k^2)^2-2k^2+3]/(1+k^2)
=(1+k^2)+5/(1+k^2)-2≥2√5-2
解集M 是{x|x≤2√5-2}
所以,对任意实数K 总有2属于M, 0属于M
我不是他舅
2010-07-19 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.9亿
展开全部
1+k²<=k^4+4
k^4-k²+3>=0
(k²-1/2)²+11/4>=0
显然恒成立
所以有M=R
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式