高数广义积分问题!
求广义积分:∫xe^-x/(1+e^-x)²dx.下限为0,上限为+∞。(e的指数均为-x)....
求广义积分:∫xe^-x/(1+e^-x)²dx. 下限为0,上限为+∞。(e的指数均为-x).
展开
2个回答
展开全部
∫xe^-x/(1+e^-x)2dx=∫x/(e^x+e^(-x)+2)dx
换元t=e^x x=lnt
∫x/(e^x+e^(-x)+2)dx =∫lnt/(t+1/t+2)dlnt 下限为1,上限为+∞
=∫lnt/(t^2+2t+1)dt
=∫lnt/(t+1)^2dt=-∫lntd(1/t+1)=∫(1/t+1)dlnt-lnt/(t+1)[下限为1,上限为+∞]
=∫1/(t+1)tdt-lnt/(t+1)
=lnt-ln(t+1)-lnt/ (t+1)[下限为1,上限为+∞]
=(0)-(-ln2)=ln2
不知道算对没有,但方法就是这个
换元t=e^x x=lnt
∫x/(e^x+e^(-x)+2)dx =∫lnt/(t+1/t+2)dlnt 下限为1,上限为+∞
=∫lnt/(t^2+2t+1)dt
=∫lnt/(t+1)^2dt=-∫lntd(1/t+1)=∫(1/t+1)dlnt-lnt/(t+1)[下限为1,上限为+∞]
=∫1/(t+1)tdt-lnt/(t+1)
=lnt-ln(t+1)-lnt/ (t+1)[下限为1,上限为+∞]
=(0)-(-ln2)=ln2
不知道算对没有,但方法就是这个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询