初二数学题,求解
2个回答
展开全部
过A作AK⊥AB的垂线,在其上截取AK=CN=MB,连KM,KC,则
因为AM=BC,AK=BM,∠KAM=∠B=90°,
所以△KAM≌△MBC,
所以KM=CM,∠AMK=∠MCB
因为∠CMB+∠MCB=90°,
所以∠CMB+∠AMK=90°
所以∠KMC=90°
所以△KMC为等腰直角三角形,∠MCK=45°
又因为∠KAM=∠B=90°,AK=CN,
所以AK∥CN,
所以四边形ANCK是平行四边形,
所以KC∥AN,
所以∠APM=∠KCM=45°
因为AM=BC,AK=BM,∠KAM=∠B=90°,
所以△KAM≌△MBC,
所以KM=CM,∠AMK=∠MCB
因为∠CMB+∠MCB=90°,
所以∠CMB+∠AMK=90°
所以∠KMC=90°
所以△KMC为等腰直角三角形,∠MCK=45°
又因为∠KAM=∠B=90°,AK=CN,
所以AK∥CN,
所以四边形ANCK是平行四边形,
所以KC∥AN,
所以∠APM=∠KCM=45°
展开全部
过A作AK⊥AB的垂线,在其上截取AK=CN=MB,连KM,KC,则
因为AM=BC,AK=BM,∠KAM=∠B=90°,
所以△KAM≌△MBC,
所以KM=CM,∠AMK=∠MCB
因为∠CMB+∠MCB=90°,
所以∠CMB+∠AMK=90°
所以∠KMC=90°
所以△KMC为等腰直角三角形,∠MCK=45°
又因为∠KAM=∠B=90°,AK=CN,
所以AK∥CN,
所以四边形ANCK是平行四边形,
所以KC∥AN,
所以∠APM=∠KCM=45°
因为AM=BC,AK=BM,∠KAM=∠B=90°,
所以△KAM≌△MBC,
所以KM=CM,∠AMK=∠MCB
因为∠CMB+∠MCB=90°,
所以∠CMB+∠AMK=90°
所以∠KMC=90°
所以△KMC为等腰直角三角形,∠MCK=45°
又因为∠KAM=∠B=90°,AK=CN,
所以AK∥CN,
所以四边形ANCK是平行四边形,
所以KC∥AN,
所以∠APM=∠KCM=45°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询