已知f(θ)=cos²θ+2msinθ-2m-2,θ∈R (1)对任意m∈R 求f(θ)的最
1个回答
展开全部
将原式展开得f(θ)=-2[sinθ-(m/2)]^2+(m^2)/2-2m-1
因为sinθ∈[-1,1]
所以分类讨论:
m/2<-1时,sinθ=-1时有f(θ)max=g(m)=-4m-3
-1<=m/2<=1时,f(θ)max=g(m)=1/2[(m-2)^2]-3
m/2>1时,sinθ=1时有f(θ)max=g(m)=-3
如果答案对您有帮助,真诚希望您的采纳和好评哦!!
祝:学习进步哦!!
*^_^* *^_^*
因为sinθ∈[-1,1]
所以分类讨论:
m/2<-1时,sinθ=-1时有f(θ)max=g(m)=-4m-3
-1<=m/2<=1时,f(θ)max=g(m)=1/2[(m-2)^2]-3
m/2>1时,sinθ=1时有f(θ)max=g(m)=-3
如果答案对您有帮助,真诚希望您的采纳和好评哦!!
祝:学习进步哦!!
*^_^* *^_^*
追答
第二问掉了个2msinθ吧
cos2θ=1-2(sinθ)^2
代入有
(sinθ-m/2)^2 > m^2/4 - m - 1/2
要恒成立
只要不等式右边恒小于或等于0
如果答案对您有帮助,真诚希望您的采纳和好评哦!!
祝:学习进步哦!!
*^_^* *^_^*
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询