已知数列an的前n项和Sn,且Sn=2n^2+n(n属于正整数)数列bn满足bn=2的((an-3
已知数列an的前n项和Sn,且Sn=2n^2+n(n属于正整数)数列bn满足bn=2的((an-3)除以4)的次方(n属于正整数)1求an和bn的通项公式2宁cn=2的(...
已知数列an的前n项和Sn,且Sn=2n^2+n(n属于正整数)数列bn满足bn=2的((an-3)除以4)的次方(n属于正整数) 1求an和bn的通项公式 2宁cn=2的(㏒2为底an的对数+㏒2为底bn的对数)次方,求数列cn的前n项和为Tn
展开
2个回答
展开全部
(1)
Sn=2n^2+n
n=1, a1=3
an=Sn-S(n-1)
= 2(2n-1) +1
=4n-1
bn=2^[(an-3)/4]
=2^(n-1)
(2)
let
S =1.2^1+2.2^2+...+n.2^n (1)
2S = 1.2^2+2.2^3+...+n.2^(n+1) (2)
(2)-(1)
S = n.2^(n+1) - ( 2+2+...+2^n)
=n.2^(n+1) - 2( 2^n -1)
cn=2^(log<2>an +log<2>bn)
= 2^[log<2>(an.bn)]
=an.bn
= (4n-1).2^(n-1)
= 2[n.2^n] - 2^(n-1)
Tn=c1+c2+...+cn
=2S - (2^n -1)
=2n.2^(n+1) - 5( 2^n -1)
=5+(4n-5).2^n
Sn=2n^2+n
n=1, a1=3
an=Sn-S(n-1)
= 2(2n-1) +1
=4n-1
bn=2^[(an-3)/4]
=2^(n-1)
(2)
let
S =1.2^1+2.2^2+...+n.2^n (1)
2S = 1.2^2+2.2^3+...+n.2^(n+1) (2)
(2)-(1)
S = n.2^(n+1) - ( 2+2+...+2^n)
=n.2^(n+1) - 2( 2^n -1)
cn=2^(log<2>an +log<2>bn)
= 2^[log<2>(an.bn)]
=an.bn
= (4n-1).2^(n-1)
= 2[n.2^n] - 2^(n-1)
Tn=c1+c2+...+cn
=2S - (2^n -1)
=2n.2^(n+1) - 5( 2^n -1)
=5+(4n-5).2^n
2014-03-03
展开全部
不能擦手季风雕文是否实在不成
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询