在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC 5

(1)求角B的大小;(2)设m=(sinA,cos2A),n=(4k,1),且m•n的最大值是5,求k的值.... (1)求角B的大小;
(2)设m=(sinA,cos2A),n=(4k,1),且m•n的最大值是5,求k的值.
展开
 我来答
匿名用户
2014-04-19
展开全部
1(2a-c)cosB=bcosCa=sinA/2R,b=sinB/2R,c=sinC/2R故(2sinA/2R-sinC/2R)cosB=sinB/2R*cosC
(2sinA-sinC)cosB=sinBcosC
2sinAcosB-sinCcosB=sinBcosC
2sinAcosB=sinCcosB+sinBcosC
又sinCcosB+sinBcosC=sin(B+C)=sinA
故2sinAcosB=sinA
2cosB=1
cosB=1/2
角B的大小是60度
若a,b,c成等比数列
即b^2=ac
由余弦定理得
cosB=(a^2+c^2-b^2)/2ac=((a+c)^2-2ac-b^2)/2ac=1/2
(a+c)^2-2ac-b^2=ac
(a+c)^2-2ac-ac=ac
a^2+c^2-2ac=0
(a-c)^2=0
a-c=0
即a=c
又角B的大小是60度
故三角形ABC是等边三角形
追问
真棒 复制了一个对不上题目的答案
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
解明市问芙
2019-07-20 · TA获得超过1124个赞
知道小有建树答主
回答量:1891
采纳率:100%
帮助的人:8.7万
展开全部
用余弦定理啊!!
(2a+c)cosB+bcosC=0
所以
(2a+c)(a^2+c^2-b^2)/2ac
+b(a^2+b^2-c^2)/2ab=0
整理,有:
(a^2+c^2-b^2)/c
+[(a^2+c^2-b^2)+(a^2+b^2-c^2)]/2a=0
所以
(a^2+c^2-b^2)/c
+a=0
所以
(a^2+c^2-b^2)/(2ca)=
-1/2=cosB
又因为B是三角形内角
所以∠B=120度
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式