行测数学题目
2013-11-26 · 国内知名职业教育培训机构
您好,中公教育为您服务。
数学运算是国家公务员考试中的重点题型,考生们在复习数学运算的过程中,要重点掌握数学运算的常用解题方法。这些方法不仅能够帮助考生快速找到思路、简化解题过程、优化计算步骤,而且有几种方法经常用到并适用于大多数题型。接下来中公教育专家就为大家介绍几种常用解题方法。
一、代入排除法
代入排除法就是从选项入手,代入某个选项后,如果不符合已知条件,或者推出矛盾,则可排除此选项的方法。代入排除法包括直接代入排除和选择性代入排除两种。其中,直接代入,就是把选项一个一个代入验证,直至得到符合题意的选项为止;选择性代入,是根据数的特性(奇偶性、整除特性、尾数特性、余数特性等)先筛选,再代入排除的方法。
代入排除法广泛运用于多位数问题、不定方程问题、剩余问题、年龄问题、复杂行程问题、和差倍比问题等等。
二、特殊值法
特殊值法,就是在题目所给的范围内取一个恰当的特殊值直接代入,将复杂的问题简单化的方法。特殊值法必须选取满足题干的特殊数、特殊点、特殊函数、特殊数列或特殊图形代替一般的情况,并由此计算出结果,从而快速解题。
在公务员考试中,特殊值法常应用于和差倍比问题、行程问题、工程问题、浓度问题、利润问题、几何问题等。其中,在工程问题、浓度问题相关的比例问题时,一般将特殊值设为1;在涉及多个比例的问题时,有时为了将数值整数化,可以设特殊值为总量的最小公倍数。
在运用特殊值法时,中公教育专家提醒考生要注意:确定这个特殊值不影响所求结果;数据应便于快速、准确计算,可尽量使计算结果为整数;结合其他方法灵活使用。
三、方程法
方程法是指将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式(组),通过求解未知数的数值,来解应用题的方法。因其为正向思维,思路简单,故不需要复杂的分析过程。
方程法应用较为广泛,公务员考试数学运算绝大部分题目,如行程问题、工程问题、盈亏问题、和差倍比问题、浓度问题、利润问题、年龄问题等均可以通过方程法来求解。
主要步骤:设未知量——找等量关系——列方程(组)——解方程(组)。
四、图解法
图解法就是利用图形来解决数学运算的方法。图解法简单直观,能够清楚表现出问题的过程变化。一般说来,图解法适用于绝大部分题型,尤其是在行程问题、年龄问题、容斥问题等强调分析过程的题型中运用得很广。
图解法运用的图形包括线段图、网状图/树状图、文氏图和表格等。
线段图即是用线段来表示数字和数量关系的方法。一般情况下,我们会用线段来表示量与量之间的倍数关系或者整个运动过程等,来解决和差倍比问题、行程问题等。线段图在行程问题中非常有效,因为它能够帮助考生快速理清各物体的运动过程,从而找到物体速度或者路程之间的关系。
网状图或树状图一般用来解决过程或者数量关系比较复杂的题型,比如排列组合问题、推理问题或者时间安排类的对策分析问题。
文氏图就是用圆圈来表示一类事物的图形,一般只有容斥问题会用到文氏图。
利用表格可以将多次操作问题和还原问题中的复杂过程一一表现出来。同时,我们也可以用表格来理清数量关系,帮助列方程。
五、分合法
分合法就是利用分与合两种不同的思维解答数学运算的方法。所谓“分”,就是将一个问题拆分成若干个小问题,然后从局部来考虑每个小问题;所谓“合”,就是把若干问题合在一起,从整体上思考这些问题。也就是说,“分”就是局部考虑,是拆分;“合”是整体考虑,是整合。分合法一般适用于排列组合与概率问题、解方程等。
分合法常用的两种思路为分类讨论和整体法。
(一)分类讨论
分类讨论,是指当不能对问题所给的对象进行统一研究时,需要对研究对象按某个标准进行分类,逐类研究,最后将结论汇总得解的方法。在进行分类讨论时,要注意分类标准统一,分类情况不遗漏、不重复,不越级讨论。分类讨论与加法原理经常一起使用,一般是多种情况分类讨论以后,再利用加法原理求出总的情况数。
(二)整体法
整体法与分类讨论正好相反,它强调从整体上来把握变化,而不是拘泥于局部的处理
整体法有两种表现形式:
1.将某一部分看成一个整体,在问题中总是一起考虑,而不单独求解;
2.不关心局部关系,只关心问题的整体情况,直接根据整体情况来考虑关系。这种形式经常用于平均数问题。
六、十字交叉法
十字交叉法是利用“交叉十字”来求两个部分混合后平均量的一种简便方法。十字交叉法一般只用于两个部分相关的平均值问题,且运用的前提已知总体平均值r。
七、极端法
极端法是指通过考虑问题的极端状态,探求解题方向或转化途径的一种常用方法。极端法一般适用于鸡兔同笼问题、对策分析类问题等。
在公务员考试中运用极端法的情况主要有分析极端状态和考虑极限图形与极限位置两种情况。
(一)分析极端状态
先分析并找出问题的极限状态,再与题干条件相比较,作出相应调整,得出所求问题的解。公务员考试中的鸡兔同笼问题以及出现“至多”“至少”等字样的题,均可通过分析问题的极端状态来求解。
(二)考虑极限图形与极限位置
极限图形:主要是利用一些几何知识。例如,对于空间几何体,当表面积相同时,越趋近于球体的体积越大;同理,当体积相同时,越趋近于球体的表面积越小。
极限位置:首先找到图形中满足条件的极端位置,再判断极端位置与题中所求之间的关系,进而求出题目答案。
加油,祝考试成功!
如有疑问,欢迎向中公教育企业知道提问。
248. 一笼中的鸡和兔共250条腿,已知鸡的只数是兔只数的3倍,问笼中共有多少只鸡?
A.50 B.75 C.100 D.125
249. 一架飞机所带燃料最多可用6小时,飞机顺风,每小时可飞1500千米,飞回时逆风,每小时可飞1200千米,这架飞机最多飞出___________千米,就需往回飞?
250. 6个身高不同的人分成2排,每排3人,每排从左到右,由低到高,且后排的人比他身前的人高,问有多少种排法?
251. 甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。求A、B两地间的路程
252. 某人从甲地步行到乙地,走了全程的2/5之后,离中点还有2.5公里。则甲、乙两地距离多少公里?
A.15 B.25 C.35 D.45
253. 在一本300页的书中,数字“1”在书中出现了多少次? A.100 B.10 C.1000 D.10000
255. 在1至1000这1000个自然数中,能被5或11整除的自然数一共有多少个?
256. 有128位旅客,其中25人既不懂英语、又不懂法语,有98人懂英语,75人懂法语,请问:既懂英语、又懂法语的有多少人?
257. 60名同学面向老师站成一横排。老师先让同学们从左到右按照1、2、3、4、……、59、60的顺序依次报数,再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。请问:现在面向老师的学生还有多少名?
256. 60名同学面向老师站成一横排。老师先让同学们从左到右按照1、2、3、4、……、59、60的顺序依次报数,再让报数是4的倍数的同学向后转,接着又让报数是6的
倍数的同学向后转。请问:现在面向老师的学生还有多少名?
258. 李老师出了两道题,全班40人中,第一道题有30人对,第2题有12人未做对,两题都做对的有20人。请问:
(1)第2题对,但是第1题不对的有多少人? (2)两道题都不对的有几个人?
259. 一个班有学生48人,每人至少参加跑步、跳高两项比赛中的一项。已知参加跑步的有37人,参加跳高的有40人,请问:这两项比赛都参加的学生有多少人?
260. 三个空酒瓶能换一瓶啤酒,现在有50个空瓶子,问最多能换多少瓶啤酒?
261. 7 , 9 , 40 , 74 , 1526 , ( )
262. 2 , 7 , 28 , 63 , ( ) , 215
263. 3 , 4 , 7 , 16 , ( ) , 124
264. 10,9,17,50,( ) A.69 B.110 C.154 D.199
265. 1 , 23 , 59 ,( ) , 715 A.12 B.34 C.214 D.37
266. -7,0,1,2,9,( )
A.12 B.18 C.24 D.28
267. 1 , 2 , 8 , 28 , ( ) A.72 B.100 C.64 D.56
268. 3 , 11 , 13 , 29 , 31 ( )
A.52 B.53 C.54 D.55
269. 14 , 4 , 3 , -2 ,( )
A.-3 B.4 C.-4 D.-8
270. -1 ,0 ,1 ,2 ,9 ,( )
271. 2 ,8 ,24 ,64 ,( )
272. 4 , 2 , 2 , 3 , 6 , 15 ,( ) A.16 B.30 C.45 D.50
273. 7 ,9 ,40 ,74 ,1526 ,( )
274. 0 ,1 ,3 ,8 ,21 ,( )
275. 车库中停放着若干辆两轮摩托车和四轮小汽车,车的辆数与车轮数之比为2:5。问摩托车的数量与小汽车的数量之比为多少?
276. 小明家的电话号码是7位数。将前四位数组成的数与后三位数组成的数相加得9534,将前三位组成的数与后四位组成的数相加得2523。那么小明家的电话号码是?
277. 当甲在60米赛跑中冲过终点时,比乙领先10米,比丙领先20米.如果乙和丙按原来的速度继续冲向终点,那么当乙冲过终点时将比丙领先多少米?
278. 有面值为1分,2分,5分的硬币各4枚,用它们去支付2角3分。问:有多少种不同的支付方法?
279. 小明家离火车站很近,他每天都可以根据车站大楼的钟声起床。车站大
楼的钟,每敲响一下延时3 秒,间隔1 秒后再敲第二下。假如从第一下钟声响起,小明就醒了,那么到小明确切判断出已是清晨6 点,前后共经过了几秒钟?
280. 8 , 12 , 24 , 60 , ( )
281. 文具店以每个0.35元的批发价购进一批小皮球,按0.45元的零售价卖出,当卖到还剩下30个小皮球时,已获利12元,文具店购进小皮球( )个。
282. 甲,乙,丙3人分别从3张写有不同自然数的卡片中各取1张,每取一次都各自记下卡片上的数字,然后放回卡片。这样取了几次之后,甲,乙,丙各自取得数字的累计和分别是23,15,13。已知乙有一次取得3张卡片中最大的。那么,3张卡片中所写数字最小的是几?
283. 把一个多边形沿着几条直线剪开,分割成若干个多边形。分割后的多边形边数总和比原来的多13条,内角和是原来的1.3倍。请问原来的多边形是几边形,被分割成了多少个多边形?
284. 小华每分一次肥皂泡,每次恰好吹100个。肥皂泡吹出之后,经过一分有一半破裂,经过两分还有1/20没有破裂,经过两分半肥皂泡全部破裂。小华在第21次吹出100个新的肥皂泡的时候,没有破裂的肥皂泡共有( )个。
285. 在一张正方形的纸片上,有900个点,加上正方形的4 个顶点,共有904个点。这些点中任意3个点不共线,将这纸剪成三角形,每个三角形的三个点是这904个点中的点,每个三角形都不含这些点。可以剪多少个三角形?共剪多少刀?
286. 有一个半径是1分米的圆片,沿着一个边长是6分米的等边三角形滚一周,圆片经过的部分的面积是多少平方分米?
287. 甲乙两个仓库,乙仓库原有存货1200吨,当甲仓库的货物运走15分之7,乙仓库的货物运走3分之1以后,再从甲仓库取出剩下货物的10%放入乙仓库,这时,甲乙两个仓库的货物一样重。那么甲仓库原有货物多少吨?
288. 甲乙两队学生参加郊区夏令营,只有一辆车接送,坐不下。甲队学生坐车从学校出发的同时,乙队学生开始步行,车到途中某处让甲队学生下车步行去营地,车立即返回接乙队学生并直接开到营地,结果是两队学生同时到达。已知学生步行的速度为每小时4千米,汽车载学生的速度为每小时40千米,空车速度为每小时50千米,那么甲队学生步行路程与全程的比是( )
289. 5 ,41 ,149 ,329 ,( )
290. 1 ,1 ,2 ,3 ,8 ,( )
291. 2 ,33 ,45 ,58 ,( )
292. 一个正方形能分成4个正方形 能分成11个正方形吗 (大小不一定相等)
293. 用1,2,3,4,5这五个数字组成没有重复数字的自然数,从小到大顺序排列:1,2,3,4,5,12,……,54321。其中,第206个数是 。 A.313 B.12345 C.325 D.371
294. 三条边均为正整数,且最长边为11的三角形有( )个。 A.21 B.23 C.25 D.36
295. 牧场上有一片青草,牛每天吃草,草每天以均匀的速度生长。这片青草供给10头牛可以吃20天,供给15头牛吃,可以吃10天。供给25头牛吃,可以吃多少天?
296. 有一批木材,木材可以做30张桌子,也可以做15张床,现在做了2张桌子,2张床,2张凳子用了1/4的木材,剩下的木材还可以做多少张凳子? A.40 B.30 C.25 D.20
297. 2 , 2 , 0 , 7 , 9 , 9 ,( ) A.13 B.12 C.18 D.17
298. 从自然数列1,2,3,4......中依次划去2的倍数和3的倍数,但保留5的倍数,剩下的数列如下:1,5,7,10,11,13,15,17,19,20,23,25,29......在剩下的数列中,第2005个数是几?
299. 3 , 2 , 5/3 , 3/2 , ( )
A.7/5 B.5/6 C.3/5 D.3/4
300. 如果生儿子,儿子占2/3母亲占1/3,如果生女儿,女儿占1/3,母亲占2/3,生了一个儿子和一个女儿怎么分
行测的数学题目其实是比较容易得分的,只要你熟悉各种题型,掌握解题技巧。因为对于行测本身而言,题量非常大,考察的范围广,所以考试的内容不会很难。
若仍有疑问,欢迎向中政行测和中政申论备考平台进行提问!
啊·