已知函数f(x)=㏑(1+x)-mx. (1)当m=1时,求函数f(x)的单调递减区间; (2
)求函数f(x)的极值.(3)若函数f(x)在区间[0,e^2-1]上恰有两个零点,求m的取值范围...
)求函数f(x)的极值.
(3)若函数f(x)在区间[0,e^2-1]上恰有两个零点,求m的取值范围 展开
(3)若函数f(x)在区间[0,e^2-1]上恰有两个零点,求m的取值范围 展开
1个回答
展开全部
(1)
m = 1, f(x) = ln(x + 1) - x
f'(x) = 1/(x + 1) - 1 = -x/(x + 1) = 0
x = 0
-1 < x < 0: f'(x) > 0
x > 1: f'(x) < 0, 单调递减
(2)
(i) m = 0
f(x) = ln(x + 1), f'(x) = 1/(x + 1); 在定义域x > -1内, f'(x) > 0, 无极值
(ii) m = 1
见(i), 极大值: f(0) = 0
(ii) m ≠ 0
f'(x) = 1/(x + 1) - m = (1 - m - mx)/(x + 1) = 0
x = (1 - m)/m = 1/m - 1
m < 0时, x = 1/m - 1 < -1, 在定义域外, 无极值
m > 0时, x = 1/m - 1 > -1, 在定义域内; 显然f'(x)左正右负
极大值f(1/m - 1) = ln(1/m - 1 + 1) -m(1/m -1) = ln(1/m) - (1 - m) = m - 1 - lnm
m = 1, f(x) = ln(x + 1) - x
f'(x) = 1/(x + 1) - 1 = -x/(x + 1) = 0
x = 0
-1 < x < 0: f'(x) > 0
x > 1: f'(x) < 0, 单调递减
(2)
(i) m = 0
f(x) = ln(x + 1), f'(x) = 1/(x + 1); 在定义域x > -1内, f'(x) > 0, 无极值
(ii) m = 1
见(i), 极大值: f(0) = 0
(ii) m ≠ 0
f'(x) = 1/(x + 1) - m = (1 - m - mx)/(x + 1) = 0
x = (1 - m)/m = 1/m - 1
m < 0时, x = 1/m - 1 < -1, 在定义域外, 无极值
m > 0时, x = 1/m - 1 > -1, 在定义域内; 显然f'(x)左正右负
极大值f(1/m - 1) = ln(1/m - 1 + 1) -m(1/m -1) = ln(1/m) - (1 - m) = m - 1 - lnm
更多追问追答
追问
大哥....你这是复制的对吗
追答
这个是正确的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询