已知函数f(x)=1/2x+lnx(1)求函数fx的单调区间(2)求证:当x>1时,1/2x+lnx<2/3x.

手机用户58765
2014-07-06 · 超过63用户采纳过TA的回答
知道答主
回答量:131
采纳率:33%
帮助的人:117万
展开全部
f'(x)=1/2×2x+1/x=x+1/x,因为函数定义域为x>0所以x+1/x恒大于0,所以f'(x)在x>0时恒>0,所以f(x)单调递增区间为(0,+∝) (2)令g(x)=-2/3x^3+1/2x^2+lnx,所以g'(x)=-2x^2+x+1/x=(-2x^3+x^2+1)/x,因为x恒>0所以只需考虑分子的正负分子可化为-(x-1)(2x^2+x+1)因为 2x^2+x+1>0所以当x>1时g'(x)<0,当0<x<1时,g'(x)>0,所以当x=1时g(x)取极大值,所以当x>1时g(x)<g(1)=-2/3+1/2=-1/6<0,所以-2/3x^3+1/2x^2+lnx<0,即1/2x^2+lnx<2/3x^3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式