如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以CP、PQ为边做等边
如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以CP、PQ为边做等边△PCF和等边△PQE,连接EF.(1)试探索...
如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以CP、PQ为边做等边△PCF和等边△PQE,连接EF.(1)试探索EF与AB位置关系,并证明;(2)如图2,当点P为BC延长线上任意一点时,(1)结论是否成立?请说明理由.(3)如图3,在Rt△ABC中,∠ACB=90°,∠A=m°,P为BC延长线上一点,点Q为AC边动点,分别以CP、PQ为腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,连接EF.要使(1)的结论依然成立,则需要添加怎样的条件?为什么?
展开
展开全部
(1)EF⊥AB.
∵△PCF和△PQE都是等边三角形,
∴PF=PC,PE=PQ,
∠EPF+∠FPQ=∠QPC+∠FPQ=60°,
∴∠EPF=∠QPC,
∴△PFE≌△PCQ;
∴∠EPF=∠QPC=90°,
∴EF⊥PF;
在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°;
又∵∠FPC=60°,
∴∠B=∠FPC,
∴PF ∥ AB(同位角相等,两直线平行),
∴EF⊥AB;
(2)当点P为BC延长线上任意一点时,(1)结论成立.
证明:∵△PCF和△PQE都是等边三角形,
∴PF=PC,PE=PQ,
∠EPF+∠EPC=∠QPC+∠EPC=60°,
∴∠EPF=∠QPC,
∴△PFE≌△PCQ;
∴∠EFP=∠QCP=90°,
∴EF⊥PF;
在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°;
又∵∠FPC=60°,
∴∠B=∠FPC,
∴PF ∥ AB(内错角相等,两直线平行),
∴EF⊥AB;
(3)要使(1)的结论依然成立,则需要添加条件是:∠CPF=∠B=∠QPE.
需要证明△PFE≌△PCQ、PF ∥ AB(内错角相等,两直线平行),才能证明EF⊥AB.
∵△PCF和△PQE都是等边三角形,
∴PF=PC,PE=PQ,
∠EPF+∠FPQ=∠QPC+∠FPQ=60°,
∴∠EPF=∠QPC,
∴△PFE≌△PCQ;
∴∠EPF=∠QPC=90°,
∴EF⊥PF;
在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°;
又∵∠FPC=60°,
∴∠B=∠FPC,
∴PF ∥ AB(同位角相等,两直线平行),
∴EF⊥AB;
(2)当点P为BC延长线上任意一点时,(1)结论成立.
证明:∵△PCF和△PQE都是等边三角形,
∴PF=PC,PE=PQ,
∠EPF+∠EPC=∠QPC+∠EPC=60°,
∴∠EPF=∠QPC,
∴△PFE≌△PCQ;
∴∠EFP=∠QCP=90°,
∴EF⊥PF;
在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°;
又∵∠FPC=60°,
∴∠B=∠FPC,
∴PF ∥ AB(内错角相等,两直线平行),
∴EF⊥AB;
(3)要使(1)的结论依然成立,则需要添加条件是:∠CPF=∠B=∠QPE.
需要证明△PFE≌△PCQ、PF ∥ AB(内错角相等,两直线平行),才能证明EF⊥AB.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询