已知,如图:O1为x轴上一点,以O1为圆心作⊙Ο1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交

已知,如图:O1为x轴上一点,以O1为圆心作⊙Ο1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙Ο1于点E,AB是弦,且AB∥CD,直线DM的解析式为y... 已知,如图:O1为x轴上一点,以O1为圆心作⊙Ο1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙Ο1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙Ο1半径及点E的坐标;(2)如图2,过E作EF⊥BC于F,若A、B为CND上两动点(AB∥CD)时,试问:BF+CF与AC之间是否存在某种等量关系?请写出你的结论,并证明. 展开
 我来答
Vic白菜0676
2015-01-29 · TA获得超过113个赞
知道答主
回答量:203
采纳率:100%
帮助的人:148万
展开全部
(1)如图1,∵直线DM的解析式为y=3x+3,
∴D(-1,0),M(0,3),
∵△DMO∽△DCM,
∴OD?CD=DM?DM,DM=
1+9
= 
10

∴CD=10,半径为
1
2
CD=5.
连接EO1,易知∠EO1C=2∠EMC=90°.
点E的坐标(4,5).

(2)如图2,连接EC,过E作EG⊥AC于G,连接MA;
又∵∠EO1C=90°,AB∥CD,
∴优弧ECB=优弧EDN,
∴∠ECG=∠EAB=∠ECF.
又∵EC=EC,∠EGC=∠EFC
∴△ECF≌△ECG,得出CF=CG,EG=EF;
又∵∠ENC=∠EBC,
∴△ENG≌△EBF,
∴BF=NG,
∴BF+CF=NG+CG=AC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式