在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC.(Ⅰ)求A;(Ⅱ)若a=27,△A
在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC.(Ⅰ)求A;(Ⅱ)若a=27,△ABC的面积为23,求b+c....
在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC.(Ⅰ)求A;(Ⅱ)若a=27,△ABC的面积为23,求b+c.
展开
1个回答
展开全部
(Ⅰ)∵2cos(B-C)+1=4cosBcosC,
∴2(cosBcosC+sinBsinC)+1=4cosBcosC,
即2(cosBcosC-sinBsinC)=1,可得2cos(B+C)=1,
∴cos(B+C)=
.
∵0<B+C<π,可得B+C=
.
∴A=π-(B+C)=
.…(6分)
(Ⅱ)由(Ⅰ),得A=
.
∵S△ABC=2
,∴
bcsin
=2
,解得bc=8. ①
由余弦定理a2=b2+c2-2bccosA,得
(2
)2=b2+c2-2bccos
,即b2+c2+bc=28,
∴(b+c)2-bc=28. ②
将①代入②,得(b+c)2-8=28,
∴(b+c)2=36,可得b+c=6.…(12分)
∴2(cosBcosC+sinBsinC)+1=4cosBcosC,
即2(cosBcosC-sinBsinC)=1,可得2cos(B+C)=1,
∴cos(B+C)=
1 |
2 |
∵0<B+C<π,可得B+C=
π |
3 |
∴A=π-(B+C)=
2π |
3 |
(Ⅱ)由(Ⅰ),得A=
2π |
3 |
∵S△ABC=2
3 |
1 |
2 |
2π |
3 |
3 |
由余弦定理a2=b2+c2-2bccosA,得
(2
7 |
2π |
3 |
∴(b+c)2-bc=28. ②
将①代入②,得(b+c)2-8=28,
∴(b+c)2=36,可得b+c=6.…(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询