怎么做呀
1个回答
展开全部
(如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向平移5个单位,得到长方形AnBnCnDn(n>2).
(1)求AB1和AB2的长.
(2)若ABn的长为56,求n.
【解析】
(1)根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长;
(2)根据(1)中所求得出数字变化规律,进而得出ABn=(n+1)×5+1求出n即可.
【答案】
解:
解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,
第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,
∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,
∴AB1=AA1+A1A2+A2B1=5+5+1=11,
∴AB2的长为:5+5+6=16;
(2)∵AB1=2×5+1=11,AB2=3×5+1=16,
∴ABn=(n+1)×5+1=56,
解得:n=10.故答案为:
(1)11,16;
(2)10.
【点评】
此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键,主要考查学生的综合运用知识的能力.
(1)求AB1和AB2的长.
(2)若ABn的长为56,求n.
【解析】
(1)根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长;
(2)根据(1)中所求得出数字变化规律,进而得出ABn=(n+1)×5+1求出n即可.
【答案】
解:
解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,
第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,
∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,
∴AB1=AA1+A1A2+A2B1=5+5+1=11,
∴AB2的长为:5+5+6=16;
(2)∵AB1=2×5+1=11,AB2=3×5+1=16,
∴ABn=(n+1)×5+1=56,
解得:n=10.故答案为:
(1)11,16;
(2)10.
【点评】
此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键,主要考查学生的综合运用知识的能力.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询