
已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于A,B,C三点.若点B的坐标为(2,0),且
已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于A,B,C三点.若点B的坐标为(2,0),且函数f(x)在区间[-1,0]和[4,5]上有...
已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于A,B,C三点.若点B的坐标为(2,0),且函数f(x)在区间[-1,0]和[4,5]上有相同的单调性,在区间[0,2]和[4,5]上有相反的单调性.(1)求c的值;(2)求ba的取值范围;(3)求|AC|的最大值和最小值.
展开
1个回答
展开全部
(1)由条件可知f(x)在区间[-1,0]和[0,2]上有相反的单调性,
∴x=0是f(x)的一个极值点,
∴f′(0)=0
而f′(x)=3ax2+2bx+c,
故c=0.
(2)令f′(x)=0,则3ax2+2bx=0,
解得x1=0,x2=?
.
又f(x)在区间[0,2]和[4,5]上有相反的单调性,
得
解得?6≤
≤?3.
(3)设A(α,0),C(β,0),
则由题意可令f(x)=a(x-α)(x-2)(x-β)=a[x3-(2+α+β)x2+(2α+2β+αβ)x-2αβ]…(2分)
则
,解得
又∵函数f(x)的图象交x轴于B(2,0),
∴f(2)=0即8a+4b+d=0
∴d=-4(b+2a),
αβ=4+
从而|AC|=|α?β|=
∴x=0是f(x)的一个极值点,
∴f′(0)=0
而f′(x)=3ax2+2bx+c,
故c=0.
(2)令f′(x)=0,则3ax2+2bx=0,
解得x1=0,x2=?
2b |
3a |
又f(x)在区间[0,2]和[4,5]上有相反的单调性,
得
|
b |
a |
(3)设A(α,0),C(β,0),
则由题意可令f(x)=a(x-α)(x-2)(x-β)=a[x3-(2+α+β)x2+(2α+2β+αβ)x-2αβ]…(2分)
则
|
|
又∵函数f(x)的图象交x轴于B(2,0),
∴f(2)=0即8a+4b+d=0
∴d=-4(b+2a),
αβ=4+
2b |
a |
从而|AC|=|α?β|=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|