如图所示,匀强电场的场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直纸面向里.一个质量

如图所示,匀强电场的场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直纸面向里.一个质量为m=1g、带正电的小物块A,从M点沿绝缘粗糙的竖直壁无初速度... 如图所示,匀强电场的场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直纸面向里.一个质量为m=1g、带正电的小物块A,从M点沿绝缘粗糙的竖直壁无初速度下滑,当它滑行0.8m到N点时就离开壁做曲线运动.当A运动到P点时,恰好处于平衡状态,此时速度方向与水平成45°角,设P与M的高度差H为1.6m.求:(1)A沿壁下滑时克服摩擦力做的功.(2)P与M的水平距离s是多少? 展开
 我来答
装XijJ1
推荐于2016-12-01 · 超过52用户采纳过TA的回答
知道答主
回答量:99
采纳率:0%
帮助的人:121万
展开全部
解答:解:(1)小物体A下落至N点时开始离开墙壁,说明这时小物体A与墙壁之间已无挤压,弹力为零.
故有:qE=qvNB
∴vN=
E
B
=
4
2
=2m/s          
对小物体A从M点到N点的过程应用动能定理,这一过程电场力和洛仑兹力均不做功,应有:
mgh-Wf克=
1
2
m
v
2
N

∴Wf克=mgh-
1
2
m
v
2
N
=10-3×10×0.8-
1
2
×10-3×22=6×l0-3 (J)     
(2)小物体离开N点做曲线运动到达P点时,受力情况如图所示,由于θ=45°,物体处于平衡状态,建立如图的坐标系,可列出平衡方程.
qBvpcos45°-qE=0        (1)
qBvpsin45°-mg=0        (2)
由(1)得 vp=
E
Bcos45°
=2
2
m/s
由(2)得 q=
mg
Bvpsin45°
=2.5×l0-3 c                  
N→P过程,由动能定理得mg(H-h)-qES=
1
2
m
v
2
p
?
1
2
m
v
2
1

代入计算得    S=0.6 m      
答:(1)A沿壁下滑时克服摩擦力做的功6×l0-3 J.
(2)P与M的水平距离s是0.6m.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式