甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每
甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次...
甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有 张.
展开
展开全部
108 |
解:设甲a次取(4﹣k)张,乙b次取(6﹣k)张,则甲(15﹣a)次取4张,乙(17﹣b)次取6张, 则甲取牌(60﹣ka)张,乙取牌(102﹣kb)张 则总共取牌:N=a(4﹣k)+4(15﹣a)+b(6﹣k)+6(17﹣b)=﹣k(a+b)+162, 从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大, 由题意得,a≤15,b≤16, 又最终两人所取牌的总张数恰好相等, 故k(b﹣a)=42,而0<k<4,b﹣a为整数, 则由整除的知识,可得k可为1,2,3, ①当k=1时,b﹣a=42,因为a≤15,b≤16,所以这种情况舍去; ②当k=2时,b﹣a=21,因为a≤15,b≤16,所以这种情况舍去; ③当k=3时,b﹣a=14,此时可以符合题意, 综上可得:要保证a≤15,b≤16,b﹣a=14,(a+b)值最大, 则可使b=16,a=2;b=15,a=1;b=14,a=0; 当b=16,a=2时,a+b最大,a+b=18, 继而可确定k=3,(a+b)=18, 所以N=﹣3×18+162=108张. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询