如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:(1)D是BC的
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P.求证:(1)D是BC的中点;(2)△BEC∽△ADC;(3)AB×C...
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:(1)D是BC的中点;(2)△BEC ∽△ADC;(3)AB× CE=2DP×AD.
展开
展开全部
圆周角定理,等腰三角形的性质,相似三角形的判定和性质。 【分析】(1)由AB是⊙O的直径,可得AD⊥BC,又由AB=AC,由三线合一,即可证得D是BC的中点。 (2)由AB是⊙O的直径,∠AEB=∠ADB=90°,又由∠C是公共角,即可证得△BEC∽△ADC。 (3)易证得△ABD∽△BCE与△BPD∽△BCE,根据相似三角形的对应边成比例与BC=2BD,即可证得AB?CE=2DP?AD。 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询