如图,在△ABC中,BE、CF分别是∠ABC和∠ACB的角平分线,并相交于点D,EG,FG分别是∠AEB和∠AFC的角平分

如图,在△ABC中,BE、CF分别是∠ABC和∠ACB的角平分线,并相交于点D,EG,FG分别是∠AEB和∠AFC的角平分线,并相交于点G,如果∠A=40°,那么∠CDB... 如图,在△ABC中,BE、CF分别是∠ABC和∠ACB的角平分线,并相交于点D,EG,FG分别是∠AEB和∠AFC的角平分线,并相交于点G,如果∠A=40°,那么∠CDB=______;∠G=______. 展开
 我来答
小磊NZf8
推荐于2016-11-08 · 超过56用户采纳过TA的回答
知道答主
回答量:109
采纳率:0%
帮助的人:132万
展开全部
∵∠A=40°,
∴∠ABC+∠ACB=180°-40°=140°,
∵BE、CF分别是∠ABC和∠ACB的角平分线,
∴∠DBC=
1
2
∠ABC,∠DCB=
1
2
∠ACB,
∴∠DBC+∠DCB=
1
2
(∠ABC+∠ACB)=
1
2
×140°=70°,
在△BCD中,∠CDB=180°-(∠DBC+∠DCB)=180°-70°=110°;
∵EG,FG分别是∠AEB和∠AFC的角平分线,
∴∠DEG=
1
2
(180°-∠A-
1
2
∠ABC),
∠DFG=
1
2
(180°-∠A-
1
2
∠ACB),
∴∠DEG+∠DFG=
1
2
(180°-∠A-
1
2
∠ABC+180°-∠A-
1
2
∠ACB)=180°-∠A-
1
4
(∠ABC+∠ACB)=180°-40°-
1
4
×140°=105°,
又∵∠EDF=∠BDC=110°,
∴在四边形DEGF中,∠G=360°-105°-110°=145°.
故答案为:110°;145°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式