已知向量a=(sinx,cosx),b=(sinx,sinx) f(x)=2a*b 15
2个回答
展开全部
f(x)=2(sinx*sinx+sinx*cosx)
=2sinx*sinx-1+1+sin(2x)
=-cos(2x)+sin(2x)+1
=1+√2sin(2x-π/4)
根据图像就可以得到
最小周期:π
最大值:1+√2
单调递减:(-π/2,0)
=2sinx*sinx-1+1+sin(2x)
=-cos(2x)+sin(2x)+1
=1+√2sin(2x-π/4)
根据图像就可以得到
最小周期:π
最大值:1+√2
单调递减:(-π/2,0)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
向量a=(sinx,根号3cosx),向量b=(cosx,cosx),
f(x)=向量a*向量b
=sinxcosx+√3cos²x
=1/2sin2x+√3/2(1+cos2x)
=1/2sin2x+√3/2cos2x+√3/2
=sin(2x+π/3)+√3/2
由2kπ-π/2≤2x+π/3≤2kπ+π/2,k∈Z
2kπ-5π/6≤2x≤2kπ+π/6,k∈Z
∴kπ-5π/12≤x≤kπ+π/12,k∈Z
∴f(x)递增区间为[kπ-5π/12,kπ+π/12],k∈Z
f(x)=向量a*向量b
=sinxcosx+√3cos²x
=1/2sin2x+√3/2(1+cos2x)
=1/2sin2x+√3/2cos2x+√3/2
=sin(2x+π/3)+√3/2
由2kπ-π/2≤2x+π/3≤2kπ+π/2,k∈Z
2kπ-5π/6≤2x≤2kπ+π/6,k∈Z
∴kπ-5π/12≤x≤kπ+π/12,k∈Z
∴f(x)递增区间为[kπ-5π/12,kπ+π/12],k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询