已知公差不为0的等差数列{an}的首项a1=3,设数列的前项和为Sn,且1a1,1a2,1a4成等比数列.(Ⅰ)求数列
已知公差不为0的等差数列{an}的首项a1=3,设数列的前项和为Sn,且1a1,1a2,1a4成等比数列.(Ⅰ)求数列{an}的通项公式及Sn;(II)求An=1S1+1...
已知公差不为0的等差数列{an}的首项a1=3,设数列的前项和为Sn,且1a1,1a2,1a4成等比数列.(Ⅰ)求数列{an}的通项公式及Sn;(II)求An=1S1+1S2+1S3+…+1Sn.
展开
展开全部
(Ⅰ)由a1=3且
、
、
成等比数列得(
)2=
×
,
即(
)2=
×
,
解得d=3.
∴数列{an}的通项公式an=3n,
∴Sn=
.
(2)∵
=
(
-
),
∴An=
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
1 |
a1 |
1 |
a2 |
1 |
a4 |
1 |
a2 |
1 |
a1 |
1 |
a4 |
即(
1 |
3+d |
1 |
3 |
1 |
3+3d |
解得d=3.
∴数列{an}的通项公式an=3n,
∴Sn=
3n(n+1) |
2 |
(2)∵
1 |
Sn |
2 |
3 |
1 |
n |
1 |
n+1 |
∴An=
1 |
S1 |
1 |
S2 |
1 |
Sn |
2 |
3 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=
2 |
3 |