(2010?南京模拟)如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L=1m,导轨平面与水平面夹角α=30°

(2010?南京模拟)如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L=1m,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B=1.0T的匀强磁场垂直导... (2010?南京模拟)如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L=1m,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B=1.0T的匀强磁场垂直导轨平面斜向下,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m=0.01kg、电阻不计.定值电阻R1=30Ω,电阻箱电阻调到R2=120Ω,电容C=0.01F,取重力加速度g=10m/s2.现将金属棒由静止释放.(1)在开关接到1的情况下,求金属棒下滑的最大速度.(2)在开关接到1的情况下,当R2调至30Ω后且金属棒稳定下滑时,R2消耗的功率为多少?(3)在开关接到2的情况下,求经过时间t=2.0s时金属棒的速度. 展开
 我来答
你猜0986
推荐于2016-09-11 · TA获得超过127个赞
知道答主
回答量:101
采纳率:0%
帮助的人:93.7万
展开全部
(1)当金属棒匀速下滑时速度最大,设最大速度vm,此时棒处于平衡状态,
故有mgsinα=F,而F=BIL,I=
BLvm
R
,其中R=150Ω
由上各式得:mgsinα=
B2L2
R
vm

解得最大速度vm=
mgR
B2L2
sinα=7.5m/s

(2)当R2调整后,棒稳定下滑的速度,由前面可知:v=
mgsinα
B2L2
(R1+R2)=3m/s

故R2消耗的功率P2=I2R,其中I=
BL
R1+R2
v=0.05A

    得P2=0.075W.
(3)对任意时刻,由牛顿第二定律  mgsinα-BLi=ma
i=
△q
△t
     △q=C△u
△u=BL△v   a=
△v
△t

得a=
mgsinα
B2L2C+m
,上式表明棒下滑过程中,加速度保持不变,棒匀加速直线运动,
代入数据可得:a=2.5m/s2
故v=at=5m/s
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式