在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△A... 在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. 展开
 我来答
珍倩露1957
推荐于2016-11-14 · 超过69用户采纳过TA的回答
知道答主
回答量:125
采纳率:0%
帮助的人:130万
展开全部
(1)设此抛物线的函数解析式为:
y=ax2+bx+c(a≠0),
将A(-4,0),B(0,-4),C(2,0)三点代入函数解析式得:
16a?4b+c=0
c=?4
4a+2b+c=0

解得
a=
1
2
b=1
c=?4

所以此函数解析式为:y=
1
2
x2+x?4


(2)∵M点的横坐标为m,且点M在这条抛物线上,
∴M点的坐标为:(m,
1
2
m2 +m?4
),
∴S=S△AOM+S△OBM-S△AOB
=
1
2
×4×(-
1
2
m2-m+4)+
1
2
×4×(-m)-
1
2
×4×4
=-m2-2m+8-2m-8
=-m2-4m,
=-(m+2)2+4,
∵-4<m<0,
当m=-2时,S有最大值为:S=-4+8=4.
答:m=-2时S有最大值S=4.

(3)设P(x,
1
2
x2+x-4).
当OB为边时,根据平行四边形的性质知PB∥OQ,
∴Q的横坐标的绝对值等于P的横坐标的绝对值,
又∵直线的解析式为y=-x,
则Q(x,-x).
由PQ=OB,得|-x-(
1
2
x2+x-4)|=4,
解得x=0,-4,-2±2
5

x=0不合题意,舍去.
如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).
由此可得Q(-4,4)或(-2+2
5
,2-2
5
)或(-2-2
5
,2+2
5
)或(4,-4).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式