在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△A...
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
展开
1个回答
展开全部
(1)设此抛物线的函数解析式为:
y=ax2+bx+c(a≠0),
将A(-4,0),B(0,-4),C(2,0)三点代入函数解析式得:
解得
,
所以此函数解析式为:y=
x2+x?4;
(2)∵M点的横坐标为m,且点M在这条抛物线上,
∴M点的坐标为:(m,
m2 +m?4),
∴S=S△AOM+S△OBM-S△AOB
=
×4×(-
m2-m+4)+
×4×(-m)-
×4×4
=-m2-2m+8-2m-8
=-m2-4m,
=-(m+2)2+4,
∵-4<m<0,
当m=-2时,S有最大值为:S=-4+8=4.
答:m=-2时S有最大值S=4.
(3)设P(x,
x2+x-4).
当OB为边时,根据平行四边形的性质知PB∥OQ,
∴Q的横坐标的绝对值等于P的横坐标的绝对值,
又∵直线的解析式为y=-x,
则Q(x,-x).
由PQ=OB,得|-x-(
x2+x-4)|=4,
解得x=0,-4,-2±2
.
x=0不合题意,舍去.
如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).
由此可得Q(-4,4)或(-2+2
,2-2
)或(-2-2
,2+2
)或(4,-4).
y=ax2+bx+c(a≠0),
将A(-4,0),B(0,-4),C(2,0)三点代入函数解析式得:
|
解得
|
所以此函数解析式为:y=
1 |
2 |
(2)∵M点的横坐标为m,且点M在这条抛物线上,
∴M点的坐标为:(m,
1 |
2 |
∴S=S△AOM+S△OBM-S△AOB
=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=-m2-2m+8-2m-8
=-m2-4m,
=-(m+2)2+4,
∵-4<m<0,
当m=-2时,S有最大值为:S=-4+8=4.
答:m=-2时S有最大值S=4.
(3)设P(x,
1 |
2 |
当OB为边时,根据平行四边形的性质知PB∥OQ,
∴Q的横坐标的绝对值等于P的横坐标的绝对值,
又∵直线的解析式为y=-x,
则Q(x,-x).
由PQ=OB,得|-x-(
1 |
2 |
解得x=0,-4,-2±2
5 |
x=0不合题意,舍去.
如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).
由此可得Q(-4,4)或(-2+2
5 |
5 |
5 |
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询