![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B
如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH...
如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD.其中正确的结论为( )A.①②④B.①②③C.②③D.①③
展开
1个回答
展开全部
∵∠B和∠ACD都是∠CAB的余角,
∴∠ACD=∠B,故①正确;
∵CD⊥AB,EF⊥AB,
∴EF∥CD,
∴∠AEF=∠CHE,
∴∠CEH=∠CHE,
∴CH=CE=EF,故②正确;
∵角平分线AE交CD于H,
∴∠CAE=∠BAE,
在△ACE和△AEF中,
,
∴△ACE≌△AFE(AAS),
∴AC=AF,故③正确;
CH=CE=EF>HD,
故④错误.
故正确的结论为①②③.
故选B.
∴∠ACD=∠B,故①正确;
∵CD⊥AB,EF⊥AB,
∴EF∥CD,
∴∠AEF=∠CHE,
∴∠CEH=∠CHE,
∴CH=CE=EF,故②正确;
∵角平分线AE交CD于H,
∴∠CAE=∠BAE,
在△ACE和△AEF中,
|
∴△ACE≌△AFE(AAS),
∴AC=AF,故③正确;
CH=CE=EF>HD,
故④错误.
故正确的结论为①②③.
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询