如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B

如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH... 如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD.其中正确的结论为(  )A.①②④B.①②③C.②③D.①③ 展开
 我来答
蜡笔爱小新pu
2014-10-04 · 超过68用户采纳过TA的回答
知道答主
回答量:137
采纳率:0%
帮助的人:150万
展开全部
∵∠B和∠ACD都是∠CAB的余角,
∴∠ACD=∠B,故①正确;

∵CD⊥AB,EF⊥AB,
∴EF∥CD,
∴∠AEF=∠CHE,
∴∠CEH=∠CHE,
∴CH=CE=EF,故②正确;

∵角平分线AE交CD于H,
∴∠CAE=∠BAE,
在△ACE和△AEF中,
∠CAE=∠FAE
∠ACE=∠AFE=90°
AE=AE

∴△ACE≌△AFE(AAS),
∴AC=AF,故③正确;

CH=CE=EF>HD,
故④错误.
故正确的结论为①②③.
故选B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式