已知线性变换在一组基下的矩阵怎样求它的核与像
2个回答
展开全部
求核空间Ker(A)的基相当于解线性方程组Ax=0,可以对A做初等行变换来实现。
求像空间Im(A)的基相当于求A的列的极大无关组,可以对A做初等列变换来实现。
核就是以矩阵为系数矩阵的齐次方程组的解集;值域就是先找出上述方程的解集的基;再找出包含这组基的线性空间的基;然后在线性空间的基里面去除解集的基,剩下的就是值域的基。
扩展资料:
支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间。特征空间的维数可能非常高。如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高维空间中这个内积,即K( x, x′) =<φ( x) ⋅φ( x′) > 。
那么支持向量机就不用计算复杂的非线性变换,而由这个函数 K(x, x′) 直接得到非线性变换的内积,使大大简化了计算。这样的函数 K(x, x′) 称为核函数。
参考资料来源:百度百科-核函数
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询