笛卡尔研究解析几何的出发点是什么?他又是怎样得到解析几何思想的
1个回答
展开全部
笛卡尔对数学最重要的贡献是创立了解析几何。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,并成功地将当时完全分开的代数和几何学联系到了一起。于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础,而微积分又是现代数学的重要基石。解析几何直到现在仍是重要的数学方法之一。
笛卡尔不仅提出了解析几何学的主要思想方法,还指明了其发展方向。在他的著作《几何》中,笛卡尔将逻辑,几何,代数方法结合起来,通过讨论作图问题,勾勒出解析几何的新方法,从此,数和形就走到了一起,数轴是数和形的第一次接触。并向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。笛卡尔引入了坐标系以及线段的运算概念。他创新地将几何图形‘转译’代数方程式,从而将几何问题以代数方法求解,这就是今日的“解析几何”或称“座标几何”。
解析几何的创立是数学史上一次划时代的转折。而平面直角坐标系的建立正是解析几何得以创立的基础。直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念可以用代数形式来表示,几何图形也可以用代数形式来表示,于是代数和几何就这样合为一家人了。
此外,现在使用的许多数学符号都是笛卡尔最先使用的,这包括了已知数a, b, c以及未知数x, y, z等,还有指数的表示方法。他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。
笛卡尔坐标系
在数学里,笛卡儿坐标系(Cartesian坐标系),也称直角坐标系,是一种正交坐标系。二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标 是根据数轴上 对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。
采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。
笛卡尔坐标系是由法国数学家勒内·笛卡尔创建的。1637年,笛卡尔发表了巨作《方法论》。这本专门研究与讨论西方治学方法的书,提供了许多正确的见解与良好的建议,对于后来的西方学术发展,有很大的贡献。
为了显示新方法的优点与果效,以及对他个人在科学研究方面的帮助,在《方法论》的附录中,他增添了另外一本书《几何》。有关笛卡儿坐标系的研究,就是出现于《几何》这本书内。
笛卡儿在坐标系这方面的研究结合了代数与欧几里得几何,对于后来解析几何、微积分、与地图学的建树,具有关键的开导力。
轶事:蜘蛛织网和平面直角坐标系的创立
据说有一天,笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形和代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来。一会功夫,蜘蛛又顺这丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看作一个点。他在屋子里可以上,下,左,右运动,能不能把蜘蛛的每一个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以在这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找到一点P与之对应,同样道理,用一组数(X,Y)可以表示平面上的一个点,平面上的一个点也可以用一组两个有顺序的数来表示,这就是坐标系的雏形。
笛卡尔不仅提出了解析几何学的主要思想方法,还指明了其发展方向。在他的著作《几何》中,笛卡尔将逻辑,几何,代数方法结合起来,通过讨论作图问题,勾勒出解析几何的新方法,从此,数和形就走到了一起,数轴是数和形的第一次接触。并向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。笛卡尔引入了坐标系以及线段的运算概念。他创新地将几何图形‘转译’代数方程式,从而将几何问题以代数方法求解,这就是今日的“解析几何”或称“座标几何”。
解析几何的创立是数学史上一次划时代的转折。而平面直角坐标系的建立正是解析几何得以创立的基础。直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念可以用代数形式来表示,几何图形也可以用代数形式来表示,于是代数和几何就这样合为一家人了。
此外,现在使用的许多数学符号都是笛卡尔最先使用的,这包括了已知数a, b, c以及未知数x, y, z等,还有指数的表示方法。他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。
笛卡尔坐标系
在数学里,笛卡儿坐标系(Cartesian坐标系),也称直角坐标系,是一种正交坐标系。二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标 是根据数轴上 对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。
采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。
笛卡尔坐标系是由法国数学家勒内·笛卡尔创建的。1637年,笛卡尔发表了巨作《方法论》。这本专门研究与讨论西方治学方法的书,提供了许多正确的见解与良好的建议,对于后来的西方学术发展,有很大的贡献。
为了显示新方法的优点与果效,以及对他个人在科学研究方面的帮助,在《方法论》的附录中,他增添了另外一本书《几何》。有关笛卡儿坐标系的研究,就是出现于《几何》这本书内。
笛卡儿在坐标系这方面的研究结合了代数与欧几里得几何,对于后来解析几何、微积分、与地图学的建树,具有关键的开导力。
轶事:蜘蛛织网和平面直角坐标系的创立
据说有一天,笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形和代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来。一会功夫,蜘蛛又顺这丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看作一个点。他在屋子里可以上,下,左,右运动,能不能把蜘蛛的每一个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以在这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找到一点P与之对应,同样道理,用一组数(X,Y)可以表示平面上的一个点,平面上的一个点也可以用一组两个有顺序的数来表示,这就是坐标系的雏形。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询