什么是微积分?微积分入门
2个回答
展开全部
说下我自己的理解
微积分,分为微分和积分的。
1、微分
说到底就是无限切割。其实这里就有一个坎了,首先你想着一个普通的正方形切成4个小的正方形,这4个小的正方形的面积和原来的正方形的面积相同,因此可以用这种思想去考虑求不规则图形的面积。
在实际的过程,你可以经常碰到dx,还有△x这种形式。你可以这样理解,△x是1cm长宽的正方形切了100次的小正方形的长,实际上你还是可以算出△x的大小为0.01cm,也有一个大概的感知,这就属于我们能够看到的范围了。你想如果你切了无数次,这个时候这个长几乎你无法感知,就像不存在一样,这个时候就用dx来表示了,它仅仅是一个符号,表示非常非常小,几乎为0但不是0。这就是△x能约分,dx不能约分的原因了。
这样每个小正方形的长宽都是非常小的,几乎接近于0,长用dx表示,宽用dy来表示,那么dxdy就是这个小正方形的面积,我们求的是无数个小正方形的面积,所以这里就要将无数个这种dxdy相加,这个时候就需要积分了。
2、积分
积分说到底还是进行求和的,就是非常非常多的项进行加法。这个时候就会有公式给你用了。可以看到这两者是有机统一的,所以一般会一起说。
微积分,分为微分和积分的。
1、微分
说到底就是无限切割。其实这里就有一个坎了,首先你想着一个普通的正方形切成4个小的正方形,这4个小的正方形的面积和原来的正方形的面积相同,因此可以用这种思想去考虑求不规则图形的面积。
在实际的过程,你可以经常碰到dx,还有△x这种形式。你可以这样理解,△x是1cm长宽的正方形切了100次的小正方形的长,实际上你还是可以算出△x的大小为0.01cm,也有一个大概的感知,这就属于我们能够看到的范围了。你想如果你切了无数次,这个时候这个长几乎你无法感知,就像不存在一样,这个时候就用dx来表示了,它仅仅是一个符号,表示非常非常小,几乎为0但不是0。这就是△x能约分,dx不能约分的原因了。
这样每个小正方形的长宽都是非常小的,几乎接近于0,长用dx表示,宽用dy来表示,那么dxdy就是这个小正方形的面积,我们求的是无数个小正方形的面积,所以这里就要将无数个这种dxdy相加,这个时候就需要积分了。
2、积分
积分说到底还是进行求和的,就是非常非常多的项进行加法。这个时候就会有公式给你用了。可以看到这两者是有机统一的,所以一般会一起说。
展开全部
微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询