大一高等数学,求不定积分,第6小题,详细过程
2个回答
展开全部
解:
令⁶√x=t,则x=t⁶,√x=t³,³√x=t²
∫[1/(√x+³√x)]dx
=∫[1/(t³+t²)]d(t⁶)
=∫[6t⁵/(t³+t²)]d(t)
=∫[6t³/(1+t)]d(t)
=∫[6(t³+1-1)/(1+t)]dt
=∫[6(t+1)(t²-t+1) -1]/(1+t) dt
=6∫(t²-t+1)dt -6∫[1/(t+1)]d(t+1)
=6(⅓t³-½t²+t) -6ln(t+1)+C
=2t³-3t²+6t-6ln(t+1)+C
=2√x-3³√x+6⁶√x -6ln|⁶√x +1| +C
令⁶√x=t,则x=t⁶,√x=t³,³√x=t²
∫[1/(√x+³√x)]dx
=∫[1/(t³+t²)]d(t⁶)
=∫[6t⁵/(t³+t²)]d(t)
=∫[6t³/(1+t)]d(t)
=∫[6(t³+1-1)/(1+t)]dt
=∫[6(t+1)(t²-t+1) -1]/(1+t) dt
=6∫(t²-t+1)dt -6∫[1/(t+1)]d(t+1)
=6(⅓t³-½t²+t) -6ln(t+1)+C
=2t³-3t²+6t-6ln(t+1)+C
=2√x-3³√x+6⁶√x -6ln|⁶√x +1| +C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询