已知点P为正方形ABCD外一点,PD⊥平面ABCD,PD=DC,E为PC中点,作EF⊥PB交PB于F

求证:1、PA‖平面EDB2、PB⊥平面EFD要求:用空间向量证明。O(∩_∩)O谢谢~... 求证:1、PA‖平面EDB
2、PB⊥平面EFD

要求:用空间向量证明。O(∩_∩)O谢谢~
展开
qzh123ABC
2010-07-24
知道答主
回答量:11
采纳率:0%
帮助的人:7.8万
展开全部
8.(I)证明:连结AC,AC交BD于O,连结EO.
∵底面ABCD是正方形,∴点O是AC的中点
在 中,EO是中位线,∴PA // EO
而 平面EDB且 平面EDB,
所以,PA // 平面EDB
(II)证明:
∵PD⊥底面ABCD且DC包含于底面ABCD,∴PD⊥BC∵PD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC ①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE包含于平面PDC,∴BC⊥DC②
由①和②推得DE⊥平面PBC.
而PB包含于平面PBC,∴ DE⊥PB
又EF⊥PB且DE并上EF=E ,所以PB⊥平面EFD
累的。。仙人的答案。。。个人补充了答案。。。给分吧,我不容易的。。。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式