求由曲线y=x^2及x=y^2所围图形绕x轴旋转一周所生成的旋转体体积。 30
4个回答
展开全部
解:易知围成图形为x定义在[0,1]上的两条曲线分别为y=x^2及x=y^2,
旋转体的体积为x=y^2,绕y轴旋转体的体积V1减去y=x^2绕y轴旋转体的体积V2。
V1=π∫ydy,V2=π∫y^4dy积分区间为0到1,V1-V2=3π/10.注:函数x=f(y)绕y轴旋转体的体积为V=π∫f(y)^2dy。
扩展资料:
函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x)。
得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。
参考资料来源:百度百科-函数
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
围成的图形是0到1之间的像一片叶子一样的图
根据旋转体的体积公式
v=∫(0→1)π[(√x)²-(x²)²]dx
=π∫(0→1)(x-x^4)dx
=π(x^2/2-x^5/5)|(0,1)
=π(1/2-1/5)=3π/10
根据旋转体的体积公式
v=∫(0→1)π[(√x)²-(x²)²]dx
=π∫(0→1)(x-x^4)dx
=π(x^2/2-x^5/5)|(0,1)
=π(1/2-1/5)=3π/10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
交点为(0,0)(1,1),两个曲线分别在这个区间积分,然后相减
追问
求得是体积啊
追答
算出面积后绕x轴求体积还难么…
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解
追答
直线与曲线的交点:(0,0)、(1,1),所围区域是第一象限内一弓形,绕 x 轴旋转一周后外形似一圆锥;
V=∫{x=0→1}π(y1 -y2 )dx=[(π*1 )*1]/3﹣∫{x=0→1}π(x ) dx=(π/3)﹣(π/5)*x^5|{0,1}=2π/15;
追问
y1是什么?y2是什么?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询