2个回答
展开全部
抱歉,我只能给你这些公式啊
必修4:
同角三角函数间的基本关系式:
·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)
·积的关系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα
·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)
·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα
·半角公式:sin(α/2)=正负√((1-cosα)/2)cos(α/2)=正负√((1+cosα)/2)tan(α/2)=正负√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式sin^2(α)=(1-cos(2α))/2cos^2(α)=(1+cos(2α))/2tan^2(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
必修5:
等差:an=a1+(n-1)d Sn=a1n+n(n-1)/2*d =n(a1+an)/2
等比:an=a1*q^n Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q≠1)答案补充
正弦定理:a/sinA=b/sinB=c/sinC=2R(外接圆直径)余弦定理:a^2=b^2+c^2-2bc*conA b^2=a^2+c^2-2ac*conB c^2=b^2+c^2-2ab*conC cosA=b^2+c^2-a^2/abc cosB=a^2+c^2-b^2/2ac cosC=a^2+b^2-c^2/2ab
答案补充
基本不等式:根号下ab≤a+b/2(a≥0,b≥0)如果a,b是正数,那么根号下ab≤a+b/2(当且仅当a=b时取"=")
必修4:
同角三角函数间的基本关系式:
·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)
·积的关系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα
·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)
·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα
·半角公式:sin(α/2)=正负√((1-cosα)/2)cos(α/2)=正负√((1+cosα)/2)tan(α/2)=正负√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式sin^2(α)=(1-cos(2α))/2cos^2(α)=(1+cos(2α))/2tan^2(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
必修5:
等差:an=a1+(n-1)d Sn=a1n+n(n-1)/2*d =n(a1+an)/2
等比:an=a1*q^n Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q≠1)答案补充
正弦定理:a/sinA=b/sinB=c/sinC=2R(外接圆直径)余弦定理:a^2=b^2+c^2-2bc*conA b^2=a^2+c^2-2ac*conB c^2=b^2+c^2-2ab*conC cosA=b^2+c^2-a^2/abc cosB=a^2+c^2-b^2/2ac cosC=a^2+b^2-c^2/2ab
答案补充
基本不等式:根号下ab≤a+b/2(a≥0,b≥0)如果a,b是正数,那么根号下ab≤a+b/2(当且仅当a=b时取"=")
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询