弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1] 其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号证明方法如下:
假设直线为:Y=kx+b圆的方程为:(x-a)^+(y-u)^2=r^2
假设相交弦为AB,点A为(x1.y1)点B为(X2.Y2)则有AB=√(x1-x2)^2+(y1-y2)^把y1=kx1+b.y2=kx2+b分别带入,则有:AB=√(x1-x2)^2+(kx1-kx2)^2=√(x1-x2)^2+k^2(x1-x2)^2=√1+k^2*│x1-x2│证明ABy1-y2│√[(1/k^2)+1] 的方法也是一样的
拓展资料:
弦长公式的延伸:
公式适用于所有圆锥曲线(椭圆、双曲线和抛物线)
椭圆:
(1)焦点弦:A(x1,y1),B(x2,y2),AB为椭圆的焦点弦,M(x,y)为AB中点,则L=2a±2ex
(2)设直线;与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2|√(1+K²)或|P1P2|=|y1-y2|√(1+1/K²)
双曲线:
(1)焦点弦:A(x1,y1),B(x2,y2),AB为双曲线的焦点弦,M(x,y)为AB中点,则L=-2a±2ex
(2)设直线;与双曲线交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
同上{K=(y2-y1)/(x2-x1)}
抛物线:
(1)焦点弦:已知抛物线y²=2px,A(x1,y1),B(x2,y2),AB为抛物线的焦点弦,则
|AB|=x1+x2+p或|AB|=2p/(sin²H){H为弦AB的倾斜角}
(2)设直线;与抛物线交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则同上
2024-11-19 广告
方法一:可以用一个公式表达:AB=|x1-x2|√(1+k²)=|y1-y2|√(1+1/k²)其中k为直线斜率,x1、x2为直线与圆交点A、B的横坐标;y1、y2为纵坐标
方法二:弦心距、弦长一半、圆的半径可构成一个直角三角形。弦心距d=|A*a+B*b+C|/√(A^2+B^2).(a,b)为圆心坐标,若圆的方程为一般式:x²+y²+Dx+Ey+F=0,可以有关系a=-D/2,b=-E/2
圆半径r=√(D²+E²-4F)/2,根据勾股定理(AB/2)²+d²=r²,可以求解。
拓展资料
弦长公式:方法一可以运用于一切圆锥曲线中,方法二只能适用于圆中。
圆锥曲线:经典的圆锥曲线有椭圆、双曲线和抛物线,是高考重点考察的部分,一般作为压轴题出现。
弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]
资料扩展
1、k为直线斜率。
2、(x1,y1),(x2,y2)为直线与曲线的两交点。
3、││ 为绝对值符号,√为根号。
证明如下:
设直线方程为:y=kx+b,圆的方程为:x^2+y^2=r^2,相交弦为AB,点A为(x1,y1),点B为(X2,y2),于是有AB=√(x1-x2)^2+(y1-y2)^2。
一、把y1=kx1+b,y2=kx2+b分别带入直线AB,则有:AB=√(x1-x2)^2+(kx1-kx2)^2=√1+k^2│x1-x2│。
二、同理可证:将y1=kx1+b,y2=kx2+b化为x1=(y1-b)/k,x2=(y2-b)/k再将它们分别带入直线AB,于是AB=√((y1-b)/k-(y2-b)/k)^2+(y1-y2)^2= │y1 -y2│√(1 + 1/k^2) 。
假设直线为:Y=kx+b圆的方程为:(x-a)^+(y-u)^2=r^2
假设相交弦为AB,点A为(x1.y1)点B为(X2.Y2)则有AB=√(x1-x2)^2+(y1-y2)^把y1=kx1+b.y2=kx2+b分别带入,则有:AB=√(x1-x2)^2+(kx1-kx2)^2=√(x1-x2)^2+k^2(x1-x2)^2=√1+k^2*│x1-x2│证明ABy1-y2│√[(1/k^2)+1] 的方法也是一样的
方法二、知道直线方程Ax+By+C=0和圆的方程(x-a)^2+(y-b)^2=r^2:
先算圆心到直线的距离:
d=|A*a+B*b+C|/根号下(A^2+B^2)
再用勾股定理计算弦长:
l=2*根号下(r^2-d^2)
推荐于2017-11-19
先算圆心到直线的距离:
d=|A*a+B*b+C|/根号下(A^2+B^2)
再用勾股定理计算弦长:
l=2*根号下(r^2-d^2)