已知tanθ=2,求值sin^2θ+sinθcosθ
1个回答
2016-08-10
展开全部
tanθ=2
sin²θ+sinθcosθ
= (sin²θ+sinθcosθ)/(sin²θ+cos²θ)
分子分母同除以cos²θ
= (tan²θ+tanθ)/(tan²θ+1)
= (2²+2)/(2²+1)
= 6/5
sin²θ+sinθcosθ
= (sin²θ+sinθcosθ)/(sin²θ+cos²θ)
分子分母同除以cos²θ
= (tan²θ+tanθ)/(tan²θ+1)
= (2²+2)/(2²+1)
= 6/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询