在△ABC中,AB=AC,D是AB上的一点,E是AC延长线上的一点,E是AC延长线上的一点,且CE=BD,连接DE交DC于F

(1)DE于EF的大小关系... (1)DE于EF的大小关系 展开
 我来答
痴撩i
2016-08-19 · TA获得超过493个赞
知道小有建树答主
回答量:302
采纳率:0%
帮助的人:127万
展开全部
DE=2EF
证明:过点D作DG‖AE,交BF于G
∵AB=AC(已知)
∴∠B=∠ACB(等边对等角)
∵DG‖AE
∴∠DGB=∠ACB(两直线平行,同位角相等)
∠CEF=∠GDF(两直线平行,内错角相等)
∴∠B=∠DGB(等量代换)
∴BD=DG(等角对等边)
∵CE=BD(已知)
∴CE=DG(等量代换)
在⊿CFE和⊿GFD中,
∠CFE=∠GFD(对顶角相等)
∠CEF=∠GDF
CE=DG
∴⊿CFE≌⊿GFD(AAS)
∴EF=DF
∵DE=EF+DF
∴DE=2EF
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式