求极限第三十五题
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
2016-10-31
展开全部
x-->0
设 1/x=k+&, 0<=&<1, k-->无穷大
则 x=1/(k+&)
limx[1/x]=lim k/(k+&)=lim(1+&/k)=1
用夹逼定理证明x[1/x]的极限等于1.
limk/(k+1)<=lim k/(k+&)<limk/(k-1)
lim1/(1+1/k)<=lim k/(k+&)<lim1/(1-1/k)
1<=lim k/(k+&)<1
故
x[1/x]的极限等于1.
设 1/x=k+&, 0<=&<1, k-->无穷大
则 x=1/(k+&)
limx[1/x]=lim k/(k+&)=lim(1+&/k)=1
用夹逼定理证明x[1/x]的极限等于1.
limk/(k+1)<=lim k/(k+&)<limk/(k-1)
lim1/(1+1/k)<=lim k/(k+&)<lim1/(1-1/k)
1<=lim k/(k+&)<1
故
x[1/x]的极限等于1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询