展开全部
ln[x+√(1+x^2)] 是奇函数, x^2 ln[x+√(1+x^2)] 还是奇函数,
(x^2+1)√(1-x^2) 是偶函数, 故得
I = 2 ∫ <0, 1>(x^2+1)√(1-x^2)dx (令 x = sint)
= 2 ∫ <0, π/2>[1+(sint)^2](cost)^2 dt
= ∫ <0, π/2>[3/2-(1/2)cos2t)](1+cos2t) dt
= (1/2) ∫ <0, π/2>(3-cos2t)(1+cos2t) dt
= (1/2) ∫ <0, π/2>[3+2cos2t-(cos2t)^2] dt
= (1/2) ∫ <0, π/2>[5/2+2cos2t-(1/2)cos4t)] dt
= (1/2) [(5t/2 + sin2t - (1/8)sin4t]<0, π/2> = 5π/8
(x^2+1)√(1-x^2) 是偶函数, 故得
I = 2 ∫ <0, 1>(x^2+1)√(1-x^2)dx (令 x = sint)
= 2 ∫ <0, π/2>[1+(sint)^2](cost)^2 dt
= ∫ <0, π/2>[3/2-(1/2)cos2t)](1+cos2t) dt
= (1/2) ∫ <0, π/2>(3-cos2t)(1+cos2t) dt
= (1/2) ∫ <0, π/2>[3+2cos2t-(cos2t)^2] dt
= (1/2) ∫ <0, π/2>[5/2+2cos2t-(1/2)cos4t)] dt
= (1/2) [(5t/2 + sin2t - (1/8)sin4t]<0, π/2> = 5π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询