根号2加根号2等于多少
根号2加根号2等于2√2。
√2+√2=2√2,其中√2已经是最简根式了,不可以化简,且2√2≈2.828。
最简根式介绍
当根式满足以下三个条件时,称为最简根式。
①被开方数的指数与根指数互质;
②被开方数不含分母,即被开方数中因数是整数,因式是整式;
③被开方数中不含开得尽方的因数或因式。
扩展资料:
二次根式化简的基本技巧和方法:
1、根号下是一个正整数
将该数字拆分成一个完全平方数和某个数字的乘积,然后将完全平方数开平方放到根号外面。
2、根号下是一个分数
将该分数拆分成一个分数的平方数和某个数字的乘积,然后将分数开根号到根号外面。
3、根号下有数字和字母
这种情况下,由于不确定字母是正数还是负数,因此开放的时候要带着绝对值开方。
4、两个根式相加减
首先将两个根式通分,然后再运算。
5、两个根式相乘除
注意观察两个式子的特点,决定先化简再乘除,还是先乘除再化简。
根号2加根号2约等于2.828。
根号2的近似值为1.41421。
根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。被开方的数或代数式写在符号√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
在实数范围内,
(1)偶次根号下不能为负数,其运算结果也不为负。
(2)奇次根号下可以为负数。
扩展资料:
符号史
最早的根号“ ”源于字母“L”的变形(出自拉丁语latus的首字母,表示“边长”),没有线括号(即被开方数上的横线),后来数学家笛卡尔给其加上线括号,但与前面的方根符号是分开的,因此在复杂的式子显得很乱。
直至18世纪中叶,数学家卢贝将前面的方根符号与线括号一笔写成,并将根指数写在根号的左上角,以表示高次方根(当根指数为2时,省略不写。)。从而,形成了我们现在所熟悉的开方运算符号 。
由于在计算机中的输入问题,我们有时还可以使用sqrt(a,b)来表示a的b次方根。
参考资料来源:百度百科-根号
√1+√2
=1+√2.
根号一加根号二等于一加根号二.
2016-11-06
2√2