lim1/1+x—3/1+x^3 x趋向于-1
2个回答
展开全部
解:
lim [1/(1+x) -3/(1+x³)]
x→-1
=lim [(1-x+x²)/(1+x)(1-x+x²) -3/(1+x)(1-x+x²)]
x→-1
=lim (1-x+x²-3)/[(1+x)(1-x+x²)]
x→-1
=lim (x²-x-2)/[(1+x)(1-x+x²)]
x→-1
=lim (x+1)(x-2)/[(1+x)(1-x+x²)]
x→-1
=lim (x-2)/(1-x+x²)
x→-1
=(-1-2)/[1-(-1)+(-1)²]
=(-3)/3
=-1
lim [1/(1+x) -3/(1+x³)]
x→-1
=lim [(1-x+x²)/(1+x)(1-x+x²) -3/(1+x)(1-x+x²)]
x→-1
=lim (1-x+x²-3)/[(1+x)(1-x+x²)]
x→-1
=lim (x²-x-2)/[(1+x)(1-x+x²)]
x→-1
=lim (x+1)(x-2)/[(1+x)(1-x+x²)]
x→-1
=lim (x-2)/(1-x+x²)
x→-1
=(-1-2)/[1-(-1)+(-1)²]
=(-3)/3
=-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询