MATLAB求解联立方程的问题
用图解的方式找到这两个方程的构成的联立方程的近似解x.^2+y.^2=3*x*y.^2和x.^3-x.^2=y.^2-y最好可以写详细点谢谢啊,如果可以留下QQ就更好了我...
用图解的方式找到这两个方程的构成的联立方程的近似解x.^2+y.^2=3*x*y.^2 和x.^3-x.^2=y.^2-y
最好可以写详细点
谢谢啊,如果可以留下QQ就更好了
我才学这个还有很多地方不懂呢。 展开
最好可以写详细点
谢谢啊,如果可以留下QQ就更好了
我才学这个还有很多地方不懂呢。 展开
3个回答
展开全部
图解法啊?把以下程序copy到edit中,即
>> edit
%__________________
ezplot('x.^3-x.^2=y.^2-y ',[-1 4 -2 2])
hold on
ezplot('x.^2+y.^2=3*x*y.^2 ',[-1 4 -2 2])
grid on
[X1,Y1]=ginput
[X2,Y2]=ginput
%________________________
运行后(F5键),在图形界面出现十字,把十字的中心对准曲线的交叉点,鼠标左键单击,再按回车键,得到X1和Y1的坐标;接着又出现十字,重复以上步骤,得到X2和Y2的坐标。
如果还要更精确,把坐标精细化。如
%__________________
clf
ezplot('x.^3-x.^2=y.^2-y ',[-1 2 -1.5 1.5])
hold on
ezplot('x.^2+y.^2=3*x*y.^2 ',[-1 2 -1.5 1.5])
grid on
[X1,Y1]=ginput
[X2,Y2]=ginput
%________________________
运行结果:
X1 = 0.40211132437620
Y1 = -0.89051094890511
X2 = 1.59980806142035
Y2 = 0.81751824817518
用solve检验
[x,y]=solve('x^2+y^2=3*x*y^2','x^3-x^2=y^2-y')
结果:
x =
[ 0]
[ -.37976068921827954137026288853649-.38991830919330475345517214422894*i]
[ -.37976068921827954137026288853649+.38991830919330475345517214422894*i]
[ .40049531124597856184878557883088]
[ .71811586266609446330558969000379-.27108283538804636925417115137930*i]
[ .71811586266609446330558969000379+.27108283538804636925417115137930*i]
[ 1.5894610085250582609472274849012]
y =
[ 0]
[ -.18172153613294090689416426430526+.29745978808608951704552138953654*i]
[ -.18172153613294090689416426430526-.29745978808608951704552138953654*i]
[ .89222640093375821455336170232293]
[ .64500317468890679025944232957649-.349161514367826464526007371833e-1*i]
[ .64500317468890679025944232957649+.349161514367826464526007371833e-1*i]
[ -.818789678045689981283917832866]
实根差不多,虚根就不能用绘图的方法求了。
>> edit
%__________________
ezplot('x.^3-x.^2=y.^2-y ',[-1 4 -2 2])
hold on
ezplot('x.^2+y.^2=3*x*y.^2 ',[-1 4 -2 2])
grid on
[X1,Y1]=ginput
[X2,Y2]=ginput
%________________________
运行后(F5键),在图形界面出现十字,把十字的中心对准曲线的交叉点,鼠标左键单击,再按回车键,得到X1和Y1的坐标;接着又出现十字,重复以上步骤,得到X2和Y2的坐标。
如果还要更精确,把坐标精细化。如
%__________________
clf
ezplot('x.^3-x.^2=y.^2-y ',[-1 2 -1.5 1.5])
hold on
ezplot('x.^2+y.^2=3*x*y.^2 ',[-1 2 -1.5 1.5])
grid on
[X1,Y1]=ginput
[X2,Y2]=ginput
%________________________
运行结果:
X1 = 0.40211132437620
Y1 = -0.89051094890511
X2 = 1.59980806142035
Y2 = 0.81751824817518
用solve检验
[x,y]=solve('x^2+y^2=3*x*y^2','x^3-x^2=y^2-y')
结果:
x =
[ 0]
[ -.37976068921827954137026288853649-.38991830919330475345517214422894*i]
[ -.37976068921827954137026288853649+.38991830919330475345517214422894*i]
[ .40049531124597856184878557883088]
[ .71811586266609446330558969000379-.27108283538804636925417115137930*i]
[ .71811586266609446330558969000379+.27108283538804636925417115137930*i]
[ 1.5894610085250582609472274849012]
y =
[ 0]
[ -.18172153613294090689416426430526+.29745978808608951704552138953654*i]
[ -.18172153613294090689416426430526-.29745978808608951704552138953654*i]
[ .89222640093375821455336170232293]
[ .64500317468890679025944232957649-.349161514367826464526007371833e-1*i]
[ .64500317468890679025944232957649+.349161514367826464526007371833e-1*i]
[ -.818789678045689981283917832866]
实根差不多,虚根就不能用绘图的方法求了。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
>> [x, y] = solve('x^2+y^2=3*x*y^2','x^3-x^2=y^2-y')
x =
0
.40049531124597856184878557883088
1.5894610085250582609472274849012
.71811586266609446330558969000379+.27108283538804636925417115137930*i
-.37976068921827954137026288853649+.38991830919330475345517214422894*i
-.37976068921827954137026288853649-.38991830919330475345517214422894*i
.71811586266609446330558969000379-.27108283538804636925417115137930*i
y =
0
.89222640093375821455336170232293
-.818789678045689981283917832866
.64500317468890679025944232957649+.3491615143678264645260073718334e-1*i
-.18172153613294090689416426430526-.29745978808608951704552138953654*i
-.18172153613294090689416426430526+.29745978808608951704552138953654*i
.64500317468890679025944232957649-.3491615143678264645260073718334e-1*i
>> help solve
SOLVE Symbolic solution of algebraic equations.
SOLVE('eqn1','eqn2',...,'eqnN')
SOLVE('eqn1','eqn2',...,'eqnN','var1,var2,...,varN')
SOLVE('eqn1','eqn2',...,'eqnN','var1','var2',...'varN')
The eqns are symbolic expressions or strings specifying equations. The
vars are symbolic variables or strings specifying the unknown variables.
SOLVE seeks zeros of the expressions or solutions of the equations.
If not specified, the unknowns in the system are determined by FINDSYM.
If no analytical solution is found and the number of equations equals
the number of dependent variables, a numeric solution is attempted.
Three different types of output are possible. For one equation and one
output, the resulting solution is returned, with multiple solutions to
a nonlinear equation in a symbolic vector. For several equations and
an equal number of outputs, the results are sorted in lexicographic
order and assigned to the outputs. For several equations and a single
output, a structure containing the solutions is returned.
Examples:
solve('p*sin(x) = r') chooses 'x' as the unknown and returns
ans =
asin(r/p)
[x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3 = 0') returns
x =
[ 1]
[ 3]
y =
[ 1]
[ -3/2]
S = solve('x^2*y^2 - 2*x - 1 = 0','x^2 - y^2 - 1 = 0') returns
the solutions in a structure.
S =
x: [8x1 sym]
y: [8x1 sym]
[u,v] = solve('a*u^2 + v^2 = 0','u - v = 1') regards 'a' as a
parameter and solves the two equations for u and v.
S = solve('a*u^2 + v^2','u - v = 1','a,u') regards 'v' as a
parameter, solves the two equations, and returns S.a and S.u.
[a,u,v] = solve('a*u^2 + v^2','u - v = 1','a^2 - 5*a + 6') solves
the three equations for a, u and v.
See also dsolve.
Overloaded functions or methods (ones with the same name in other directories)
help sym/solve.m
Reference page in Help browser
doc solve
x =
0
.40049531124597856184878557883088
1.5894610085250582609472274849012
.71811586266609446330558969000379+.27108283538804636925417115137930*i
-.37976068921827954137026288853649+.38991830919330475345517214422894*i
-.37976068921827954137026288853649-.38991830919330475345517214422894*i
.71811586266609446330558969000379-.27108283538804636925417115137930*i
y =
0
.89222640093375821455336170232293
-.818789678045689981283917832866
.64500317468890679025944232957649+.3491615143678264645260073718334e-1*i
-.18172153613294090689416426430526-.29745978808608951704552138953654*i
-.18172153613294090689416426430526+.29745978808608951704552138953654*i
.64500317468890679025944232957649-.3491615143678264645260073718334e-1*i
>> help solve
SOLVE Symbolic solution of algebraic equations.
SOLVE('eqn1','eqn2',...,'eqnN')
SOLVE('eqn1','eqn2',...,'eqnN','var1,var2,...,varN')
SOLVE('eqn1','eqn2',...,'eqnN','var1','var2',...'varN')
The eqns are symbolic expressions or strings specifying equations. The
vars are symbolic variables or strings specifying the unknown variables.
SOLVE seeks zeros of the expressions or solutions of the equations.
If not specified, the unknowns in the system are determined by FINDSYM.
If no analytical solution is found and the number of equations equals
the number of dependent variables, a numeric solution is attempted.
Three different types of output are possible. For one equation and one
output, the resulting solution is returned, with multiple solutions to
a nonlinear equation in a symbolic vector. For several equations and
an equal number of outputs, the results are sorted in lexicographic
order and assigned to the outputs. For several equations and a single
output, a structure containing the solutions is returned.
Examples:
solve('p*sin(x) = r') chooses 'x' as the unknown and returns
ans =
asin(r/p)
[x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3 = 0') returns
x =
[ 1]
[ 3]
y =
[ 1]
[ -3/2]
S = solve('x^2*y^2 - 2*x - 1 = 0','x^2 - y^2 - 1 = 0') returns
the solutions in a structure.
S =
x: [8x1 sym]
y: [8x1 sym]
[u,v] = solve('a*u^2 + v^2 = 0','u - v = 1') regards 'a' as a
parameter and solves the two equations for u and v.
S = solve('a*u^2 + v^2','u - v = 1','a,u') regards 'v' as a
parameter, solves the two equations, and returns S.a and S.u.
[a,u,v] = solve('a*u^2 + v^2','u - v = 1','a^2 - 5*a + 6') solves
the three equations for a, u and v.
See also dsolve.
Overloaded functions or methods (ones with the same name in other directories)
help sym/solve.m
Reference page in Help browser
doc solve
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
eq1='
d+(n+p)/2=q';
eq2='
p=n+d+q-10';
eq3='
q+d=p+n/4';
eq4='
q+p=n+8*d-1';
s=solve(eq1,eq2,eq3,eq4,'p,n,d,q')
s.d
s.n
s.p
s.q
d+(n+p)/2=q';
eq2='
p=n+d+q-10';
eq3='
q+d=p+n/4';
eq4='
q+p=n+8*d-1';
s=solve(eq1,eq2,eq3,eq4,'p,n,d,q')
s.d
s.n
s.p
s.q
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询