求17题答案
1个回答
展开全部
(1)
由等比中项性质得:a4²=a2a6=729
数列是正项数列,a4>0,a4=27
q=a5/a4=81/27=3
a1=a4/q³=27/3³=1
an=a1qⁿ⁻¹=1·3ⁿ⁻¹=3ⁿ⁻¹
bn=log3[a(n+1)]=log3(3ⁿ)=n
数列{bn}的通项公式为bn=n
(2)
cn=1/[(2bn -1)(2b(n+1)-1)]
=1/[(2n-1)(2(n+1)-1]
=1/[(2n-1)(2n+1)]
=½[1/(2n-1) -1/(2n+1)]
Sn=c1+c2+...+cn
=½[1/1 -1/3 +1/3 -1/5+...+1/(2n-1) -1/(2n+1)]
=½[1- 1/(2n+1)]
=n/(2n+1)
由等比中项性质得:a4²=a2a6=729
数列是正项数列,a4>0,a4=27
q=a5/a4=81/27=3
a1=a4/q³=27/3³=1
an=a1qⁿ⁻¹=1·3ⁿ⁻¹=3ⁿ⁻¹
bn=log3[a(n+1)]=log3(3ⁿ)=n
数列{bn}的通项公式为bn=n
(2)
cn=1/[(2bn -1)(2b(n+1)-1)]
=1/[(2n-1)(2(n+1)-1]
=1/[(2n-1)(2n+1)]
=½[1/(2n-1) -1/(2n+1)]
Sn=c1+c2+...+cn
=½[1/1 -1/3 +1/3 -1/5+...+1/(2n-1) -1/(2n+1)]
=½[1- 1/(2n+1)]
=n/(2n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询