高数求极限,7,8题(好像是一个类型的,但是我不大会)拜托大神们了。
2个回答
2017-10-06
展开全部
∫dx/(1+√(1-x^2))
x=sinu dx=cosudu √(1-x^2)=cosu
tan(u/2)=sinu/(1+cosu)=x/(1+√(1-x^2))
=∫cosudu/(1+cosu)
=∫[1-1/(1+cosu)]du
=u-∫du/(1+cosu)
=u-∫d(u/2)/(cos(u/2))^2
=u-tan(u/2)+C
=arcsinx - x/(1+√(1-x^2)) +C
x=sinu dx=cosudu √(1-x^2)=cosu
tan(u/2)=sinu/(1+cosu)=x/(1+√(1-x^2))
=∫cosudu/(1+cosu)
=∫[1-1/(1+cosu)]du
=u-∫du/(1+cosu)
=u-∫d(u/2)/(cos(u/2))^2
=u-tan(u/2)+C
=arcsinx - x/(1+√(1-x^2)) +C
追问
请问您做的真的是78吗
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询