什么是磁场对电流的作用
磁场对电流的作用是通电导线在磁场中要受到磁力的作用。电能转化为机械能。
从阴极发射出来的电子束,在阴极和阳极间的高电压作用下,轰击到长条形的荧光屏上激发出荧光,可以在示波器上显示出电子束运动的径迹。
实验表明,在没有外磁场时,电子束是沿直线前进的。如果把射线管放在蹄形磁铁的两极间,荧光屏上显示的电子束运动的径迹就发生了弯曲。这表明,运动电荷确实受到了磁场的作用力,这个力通常叫做洛伦兹力,它为荷兰物理学家H.A.洛伦兹首先提出,故得名。
扩展资料
感受到电场的作用,正电荷会朝着电场的方向加速;但是感受到磁场的作用,按照左手定则,正电荷会朝着垂直于速度V和磁场B的方向弯曲(详细地说,应用左手定则,当四指指电流方向,磁感线穿过手心时,大拇指方向为洛伦兹力方向)。
若带电粒子射入匀强磁场内,它的速度与磁场间夹角为0<θ<π/2这个粒子将作等距螺旋线运动(沿B方向的匀速直线运动和垂直于B的匀速圆周运动的和运动)。
洛伦兹力既适用于宏观电荷,也适用于微观电荷粒子。电流元在磁场中所受安培力就是其中运动电荷所受洛伦兹力的宏观表现。
导体回路在恒定磁场中运动,使其中磁通量变化而产生的动生电动势也是洛伦兹力的结果,洛伦兹力是产生动生电动势的非静电力。
如果电场E和磁场B并存,则运动点电荷受力为电场力和磁场力之和。
参考资料来源:百度百科-磁场
电生磁 电生磁
如果一条直的金属导线通过电流,那么在导线周围的空间将产生圆形磁场。导线中流过的电流越大,产生的磁场越强。磁场成圆形,围绕导线周围。磁场的方向可以根据“右手定则”(见图1)来确定:将右手拇指伸出,其余四指并拢弯向掌心。这时,拇指的方向为电流方向,而其余四指的方向是磁场的方向。实际上,这种直导线产生的磁场类似于在导线周围放置了一圈NS极首尾相接的小磁铁的效果。
如果将一条长长的金属导线在一个空心筒上沿一个方向缠绕起来,形成的物体我们称为螺线管。如果使这个螺线管通电,那么会怎样?通电以后,螺线管的每一匝都会产生磁场,磁场的方向如图2中的圆形箭头所示。那么,在相邻的两匝之间的位置,由于磁场方向相反,总的磁场相抵消;而在螺线管内部和外部,每一匝线圈产生的磁场互相叠加起来,最终形成了如图2所示的磁场形状。也可以看出,在螺线管外部的磁场形状和一块磁铁产生的磁场形状是相同的。而螺线管内部的磁场刚好与外部的磁场组成闭合的磁力线。在图2中,螺线管表示成了上下两排圆,好象是把螺线管从中间切开来。上面的一排中有叉,表示电流从荧光屏里面流出;下面的一排中有一个黑点,表示电流从外面向荧光屏内部流进。
电生磁的一个应用实例是实验室常用的电磁铁。为了进行某些科学实验,经常用到较强的恒定磁场,但只有普通的螺线管是不够的。为此,除了尽可能多地绕制线圈以外,还采用两个相对的螺线管靠近放置,使得它们的N、S极相对,这样两个线包直接就产生了一个较强的磁场。另外,还在线包中间放置纯铁(称为磁轭),以聚集磁力线,增强线包中间的磁场,
对于一个很长的螺线管,其内部的磁场大小用下面的公式计算:H=nI
在这个公式中,I是流过螺线管的电流,n是单位长度内的螺线管圈数。
如果有两条通电的直导线相互靠近,会发生什么现象?我们首先假设两条导线的通电电流方向相反,图5(a)所示。那么,根据上面的说明,两条导线周围都产生圆形磁场,而且磁场的走向相反。在两条导线之间的位置会是说明情况呢?不难想象,在两条导线之间,磁场方向相同。这就好象在两条导线中间放置了两块磁铁,它们的N极和N极相对,S极和S极相对。由于同性相斥,这两条导线会产生排斥的力量。类似地,如果两条导线通过的电流方向相同,它们会互相吸引。
如果一条通电导线处于一个磁场中,由于导线也产生磁场,那么导线产生的磁场和原有磁场就会发生相互作用,使得导线受力。这就是电动机和喇叭的基本原理。
电和磁是不可分割的,它们始终交织在一起。简单地说,就是电生磁、磁生电。
磁现象
磁体能够吸引钢铁一类的物质。它的两端吸引钢铁的能力最强,这两个部位叫做磁极。能够自有转动的磁体,例如悬吊这的磁针,静止时指南的那个磁极叫做南极,又叫S极;指北的那个磁极叫做北极,又叫N极。异名磁极相互吸引,同名磁极相互排斥.磁铁吸引铁、钴、镍等物质的性质称为磁性。磁铁两端磁性强的区域称为磁极,一端为北极(N极),一端为南极(S极)。实验证明,同性磁极相互排斥,异性磁极相互吸引。
铁中有许多具有两个异性磁极的原磁体,在无外磁场作用时,这些原磁体排列紊乱,它们的磁性相互抵消,对外不显示磁性。当把铁靠近磁铁时,这些原磁体在磁铁的作用下,整齐地排列起来,使靠近磁铁的一端具有与磁铁极性相反的极性而相互吸引。这说明铁中由于原磁体的存在能够被磁铁所磁化。而铜、铝等金属是没有原磁体结构的,所以不能被磁铁所吸引。
什么是磁性?简单说来,磁性是物质放在不均匀的磁场中会受到磁力的作用。在相同的不均匀磁场中,由单位质量的物质所受到的磁力方向和强度,来确定物质磁性的强弱。因为任何物质都具有磁性,所以任何物质在不均匀磁场中都会受到磁力的作用。
在磁极周围的空间中真正存在的不是磁力线,而是一种场,我们称之为磁场。磁性物质的相互吸引等就是通过磁场进行的。我们知道,物质之间存在万有引力,它是一种引力场。磁场与之类似,是一种布满磁极周围空间的场。磁场的强弱可以用假想的磁力线数量来表示,磁力线密的地方磁场强,磁力线疏的地方磁场弱。单位截面上穿过的磁力线数目称为磁通量密度。
运动的带电粒子在磁场中会受到一种称为洛仑兹(Lorentz)力作用。由同样带电粒子在不同磁场中所受到洛仑磁力的大小来确定磁场强度的高低。特斯拉是磁通密度的国际单位制单位。磁通密度是描述磁场的基本物理量,而磁场强度是描述磁场的辅助量。特斯拉(Tesla,N)(1886~1943)是克罗地亚裔美国电机工程师,曾发明变压器和交流电动机。
物质的磁性不但是普遍存在的,而且是多种多样的,并因此得到广泛的研究和应用。近自我们的身体和周边的物质,远至各种星体和星际中的物质,微观世界的原子、原子核和基本粒子,宏观世界的各种材料,都具有这样或那样的磁性。
世界上的物质究竟有多少种磁性呢?一般说来,物质的磁性可以分为弱磁性和强磁性,再根据磁性的不同特点,弱磁性又分为抗磁性、顺磁性和反铁磁性,强磁性又分为铁磁性和亚铁磁性。这些都是宏观物质的原子中的电子产生的磁性,原子中的原子核也具有磁性,称为核磁性。但是核磁性只有电子磁性的约千分之一或更低,故一般讲物质磁性和原子磁性都主要考虑原子中的电子磁性。原子核的磁性很低是由于原子核的质量远高于电子的质量,而且原子核磁性在一定条件下仍有着重要的应用,例如现在医学上应用的核磁共振成像(也常称磁共振CT,CT是计算机化层析成像的英文名词的缩写),便是应用氢原子核的磁性。
磁性材料可分为软磁性材料如铁和硬 磁性材料 如钢 铁等。
磁场
历史上,电与磁是分别发现和研究的。后来,电与磁之间的联系发现了,如奥斯特(
H.C.Oersted)发现的电流磁效应和安培发现的电流与电流之间相互作用的规律。再后来,
法拉第提出了电磁感应定律,这样电与磁就连成一体了。
19世纪中叶,麦克斯韦提出了统一的电磁场理论,实现了物理学的第二次大综合。电磁
定律与力学规律有一个截然不同的地方。根据牛顿的设想,力学考虑的相互作用,特别是万
有引力相互作用,是超距的相互作用,没有力的传递问题(当然,用现代观点看,引力也应
该有传递问题),而电磁相互作用是场的相互作用。从粒子的超距作用到电磁场的“场的相
互作用”,这在观念上有很大变化。场的效应被突出出来了。
电场与磁场不断相互作用造成电磁波的传播,这一点由赫兹在实验室中证实了。电磁波
不但包括无线电波,实际上包括很宽的频谱,其中很重要的一部分就是光波。光学在过去是
与电磁学完全分开发展的,麦克斯韦电磁理论建立以后,光学也变成了电磁学的一个分支了
,电学、磁学和光学得到了统一。
这个统一在技术上有重要意义,发电机、电动机几乎都是建立在电磁感应基础上的。电
磁波的应用导致现代的无线电技术。直到现在,电磁学在技术上还是起主导作用的一门学问
,因此,在基础物理学中电磁学始终保持它的重要地位。
电磁学牵涉到在什么参考系统中来看问题,牵涉到运动导体的电动力学问题。直观地说
,“电流即电荷的流动产生磁效应”,但判断电荷是否流动就牵涉到观察者的问题——参考
系问题。光学是电磁学的一部分,所以这个问题也可表达成“光的传播与参考系统有什么关
系”。迈克耳孙-莫雷实验表明惯性系中真空光速为不变量。这样一来,也就肯定了在惯性
系统中电磁学遵循同一规律。这实际上导致了后来的爱因斯坦狭义相对论。狭义相对论基本
上是电磁学的进一步发展和推广。迈克耳孙-莫雷实验在19世纪还没能解释清楚,这是19世
纪遗留的一个重要问题。
一、磁现象:
1、磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)
2、磁体: 定义:具有磁性的物质
分类:永磁体分为 天然磁体、人造磁体
3、磁极:定义:磁体上磁性最强的部分叫磁极。(磁体两端最强中间最弱)
种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)
作用规律:同名磁极相互排斥,异名磁极相互吸引。
说明:最早的指南针叫司南 。一个永磁体分成多部分后,每一部分仍存在两个磁极。
4、磁化: ① 定义:使原来没有磁性的物体获得磁性的过程。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成 异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。钢被磁化后,磁性能长期保持,称为硬磁性材料。所以制造永磁体使用钢 ,制造电磁铁的铁芯使用软铁。
5、物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。②根据磁体的指向性判断。③根据磁体相互作用规律判断。④根据磁极的磁性最强判断。
练习:☆磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。( 填“软”和“硬”)
☆ 磁悬浮列车底部装有用超导体线圈饶制的电磁体,利用磁体之间的相互作用,使列车悬浮在轨道的上方以提高运行速度,这种相互作用是指:同名磁极的相互排斥作用。
☆放在条形磁铁南极附近的一根铁棒被磁化后,靠近磁铁南极的一端是磁北极。
☆用磁铁的N极在钢针上沿同一方向摩擦几次
钢针被磁化如图那么钢针的右端被磁化成 S极。
二、磁场:
1、定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它所产生的作用来认识它。这里使用的是转换法。通过电流的效应认识电流也运用了这种方法。
2、基本性质:磁场对放入其中的磁体产生力的作用。磁极间的相互作用是通过磁场而发生的。
3、方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。
4、磁感应线:
①定义:在磁场中画一些有方向的曲线。任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。
②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
③典型磁感线:
④说明:A、磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。但磁场客观存在。
B、用磁感线描述磁场的方法叫建立理想模型法。
C、磁感线是封闭的曲线。
D、磁感线立体的分布在磁体周围,而不是平面的。
E、磁感线不相交。
F、磁感线的疏密程度表示磁场的强弱。
5、磁极受力:在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。
6、分类:
Ι、地磁场:
① 定义:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。
② 磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。
③ 磁偏角:首先由我国宋代的沈括发现。
Ⅱ、电流的磁场:
①奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。该现象在1820年被丹麦的物理学家奥斯特发现。该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。
②通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断
电生磁是否消耗电能
如果磁场不对外做功,那么不会消耗电能,若相反必消耗。能量必须守恒。
2、通电线圈在磁场中转动如下图甲所示,把一个线圈放在磁场里,接通电源,让电流通过线圈,它的ab边和cd边受到的力分别向上和向下,线圈在这两个力的作用下将按顺时针方向转动,当线圈转动到线圈平面垂直于磁感线的位置时(如图乙所示),线圈的ab边和cd边受力的方向不但相反,力的作用线也在一条直线上,这时线圈受到平衡力,线圈会停在这个位置(这个位置叫线圈的平衡位置),所以通电线圈在磁场中最多只能转半周。
3、区分电磁感应和磁场对电流的作用的两种电磁现象:电磁感应现象和磁场对电流的作用,虽然都反映了电和磁的联系,但这是两种不同的电磁现象。
总结:电磁感应现象是闭合电路的一部分导体靠外力的作用,在磁场中做切割磁感线运动,这时导体中有电流产生.由此可见在电磁感应的现象中是消耗机械能,得到电能,利用电磁感应现象制成了发电机。
导体的两端接在电流表的两个接线柱上,组成闭合电路,当导体在磁场中向左或向右运动,切割磁力线时,电流表的指针就发生偏转,表明电路中产生了电流.这样产生的电流叫感应电流。我们知道,穿过某一面积的磁力线条数,叫做穿过这个面积的磁通量。当导体向左或向右做切割磁力线的运动时,闭合电路所包围的面积发生变化,因而穿过这个面积的磁通量也发生了变化。导体中产生感应电流的原因,可以归结为穿过闭合电路的磁通量发生了变化。
可见,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流。这就是产生感应电流的条件。感应电流的方向:导体向左或向右运动时,电流表指针的偏转方向不同,这表明感应电流的方向跟导体运动的方向有关系。如果保持导体运动的方向不变,而把两个磁极对调过来,即改变磁力线的方向,可以看到,感应电流的方向也改变。可见,感应电流的方向跟导体运动的方向和磁力线的方向都有关系.感应电流的方向可以用右手定则来判定:伸开右手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把右手放入磁场中,让磁力线垂直穿入手心,大拇指指向导体运动的方向,那么其余四个手指所指的方向就是感应电流的方向。
感应电流究竟是如何产生的呢?设均匀磁场的磁力线向下垂直于纸面,导体平放在纸面上,方向正南正北,移动方向为西方。(用右手定则判感应电流方向为南方)。当导体向西移动时,可视为导体中的电荷也向西移动,而电荷在磁场中所受作用力的方向跟磁场方向、电荷运动方向之间的关系,可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电荷的运动方向(西方),那么,拇指所指的方向(南方),就是电荷在磁场中的受力方向。所以电流方向应是南方。
把线圈的两端接在电流表上,组成闭合电路.当向线圈中插入或拔出磁铁时,电流表的指针偏转,表明电路中产生了感应电流。这是因为向线圈中插入磁铁时,穿过线圈的磁通量增大,从线圈中拔出磁铁时,穿过线圈的磁通量减小。穿过线圈的磁通量发生了变化,因而产生了感应电流。向线圈中插入或拔出磁铁的过程可以等效为导体切割磁力线的过程。磁通量的变化只是产生感应电流的表层的原因,真正的原因还是线圈中的电荷受洛仑兹力运动。