2个回答
展开全部
xy'+y=y^2ln(x) 由(xy)'=xy'+y得
(xy)'=(xy)^2[ln(x)/x^2],设z=xy,则
z'=z^2[ln(x)/x^2],即dz/dx=z^2[ln(x)/x^2]
∫(1/z^2)dz=∫[ln(x)/x^2]dx,积分得
-1/z=-(ln(x)+1)/x+c,把z=xy代入,得
y=1/[ln(x)+cx+1]
其中,利用部分积分法计算∫[ln(x)/x^2]dx,(uv)'=uv'+u'v,∫uv'=uv-∫u'v
令u=ln(x),v'=1/x^2,则u'=1/x,v=-1/x
∫[ln(x)/x^2]dx=-ln(x)/x-∫-1/x^2dx=-ln(x)/x-1/x+c
(xy)'=(xy)^2[ln(x)/x^2],设z=xy,则
z'=z^2[ln(x)/x^2],即dz/dx=z^2[ln(x)/x^2]
∫(1/z^2)dz=∫[ln(x)/x^2]dx,积分得
-1/z=-(ln(x)+1)/x+c,把z=xy代入,得
y=1/[ln(x)+cx+1]
其中,利用部分积分法计算∫[ln(x)/x^2]dx,(uv)'=uv'+u'v,∫uv'=uv-∫u'v
令u=ln(x),v'=1/x^2,则u'=1/x,v=-1/x
∫[ln(x)/x^2]dx=-ln(x)/x-∫-1/x^2dx=-ln(x)/x-1/x+c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询